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ABSTRACT User-provided tags associated with social images are essential information for social image
retrieval. Unfortunately, these tags are often imperfect to describe the visual contents, which severely
degrades the performance of image retrieval. Tag relevance learning models are proposed to improve
the descriptive powers of tags mostly based on the Gaussian noise assumption. However, the intrinsic
probability distribution of the noise is unknown and other probability distributions may be much better.
Towards this end, this paper investigates the applicable probability distributions of tag noise and proposes
a novel Cauchy Matrix Factorization (CMF) method for tag-based image retrieval. The Cauchy probability
distribution is robust to all kinds of noise and more suitable to model the tagging noise of social images.
Therefore, we utilize Cauchy distribution to model noise under the matrix factorization framework. Besides,
other five probability density functions, i.e., Gaussian, Laplacian, Poisson, Student-t and Logistic, are
investigated to model noise of social tags. To evaluate the performance of different probability distributions,
extensive experiments on two widely-used datasets are conducted and results show the robustness of CMF
to noisy tags of social images.

INDEX TERMS Cauchy noise, image retrieval, matrix factorization, social tags, tag relevance learning.

I. INTRODUCTION

Recent years have witnessed the explosive growth of so-
cial images associated with user-provided tags, which often
makes users difficult to find their desired images. It raises
an urgent demand for effective image retrieval technologies.
Fortunately, the user-provided tags can describe the semantic
information of the visual contents to a certain extent, which
is beneficial to the promotion of tag-based image retrieval.
On the other hand, everything is a double-edged sword. The
quality of these tags cannot be guaranteed due to the lim-
itations of tagging time and domain knowledge of amateur
users. As reported in [Kennedy et al.2006], only about half
of tags can well describe the visual contents of images. That
is, the user-provided tags in real-world are usually imperfect
with noisy and incomplete tags. Therefore, it is necessary but
challenging to improve the descriptive powers of tags with
respect to the visual contents of social images.

Many methods have been proposed for image retagging

and tag refinement by removing the noisy tags and com-
plementing the relevant but missing tags [Li et al.2009],
[Zhu et al.2010], [Liu et al.2010], [Znaidia et al.2013],
[Wu et al.2013], [Niu et al.2015], [Xue et al.2016], [Li and
Tang2017b], [Tang et al.2017], [Li and Tang2017a], [Zhang
et al.2018]. Most of these methods learn the image-tag rele-
vance by minimizing the prediction error based on the Matrix
Factorization (MF) framework. The refined tagging matrix is
learned by minimizing the tagging noise under the low-rank
constraint and considering the content consistency and tag
correlation in [Zhu et al.2010], [Li and Tang2017b]. In [Wu
et al.2013], the relevance of images to tags is refined by con-
straining it to be consistent with the original one. The tagging
matrix is reconstructed by two latent factor matrices, which
are learned by minimizing the difference between the refined
tagging matrix and the observed tagging matrix in [Tang et
al.2017], [Li and Tang2017a]. The widely-used function is to
minimize the sum of squared error with some regularization
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terms that help prevent models from overfitting.
The problem that minimizes the sum-of-squared-errors

objective function under MF has the underlying assumption
about Gaussian distribution [Salakhutdinov and Mnih2008],
[Ma et al.2011]. Gaussian probability density function the
most well-known and widely used distribution in many fields
such as signal processing and image analysis due to its
simplicity and convenient solving as well as the central limit
theorem [Park et al.2013]. However, the intrinsic probability
distribution of data in real-world is unknown. It may be
unsuitable to model the real-world data. In the real world,
there are various types of noise, such as large, small, dense
and sparse noise [Xie and Xing2014]. It is well known
that Gaussian-based methods are limited to small noise and
sensitive to the noise of large magnitude. Consequently, it is
necessary and important to propose a new MF method to deal
with various types of noise for tag-based image retrieval.

Towards this end, this paper proposes a novel Cauchy
Matrix Factorization (CMF) method by modeling the tagging
noise using the Cauchy distribution. The tradition matrix fac-
torization model is based on the Gaussian noise assumption,
which leads to the minimizing optimization problem with
the sum-of-squared-errors objective function. However, it is
sensitive to large noise. To well model noise, we deeply
investigate the applicable probability distributions based on
different probabilistic noise assumptions, i.e., Laplacian,
Poisson, Student-t, Logistic and Cauchy distributions, and
find the Cauchy assumptions is robust to all kinds of noise.
Therefore, the Cauchy distribution is explored to model noise
and CMF is derived. It is formulated as an optimization
problem with a well-defined objective function. And the
corresponding simple yet efficient updating algorithm is de-
veloped. To evaluate the performance, extensive experiments
are conducted on two widely-used social image benchmarks
for tag-based social image retrieval.

II. RELATED WORKS
In this section, we will briefly review some previous methods
on tag-based social image retrieval and matrix factorization.

A. TAG-BASED SOCIAL IMAGE RETRIEVAL

It is essential to learn the idea image-tag relevance for
tag-based social image retrieval. It is related to the tradi-
tional image annotation [Barnard et al.2003], [Wong and
Leung2008], [Makadia et al.2010], [Yao et al.2019], which
learns models based on the supervised training data. With
the popularity of social networks and intelligent devices,
images associated weakly-supervised user-provided tags dra-
matically increase. To improve the performance of tag-based
social image retrieval, many methods have been proposed
to refine the image-tag relevance by exploring the weakly-
supervised tagging information, including shallow methods
[Li et al.2009], [Zhu et al.2010], [Liu et al.2010], [Znaidia et
al.2013], [Wu et al.2013], [Feng et al.2014], [Niu et al.2015],
[Xue et al.2016], [Tang et al.2017] and deep methods [Fu et

al.2015], [Li and Tang2017b], [Nguyen et al.2017], [Li and
Tang2017a], [Zhang et al.2018], [Li et al.2019].

For the shallow methods, they learn the desired tag rel-
evance based on the conventional learning models by ex-
ploring the user-provided tag information. In [Li et al.2009],
[Znaidia et al.2013], the image-tag relevance is refined by
the neighbor voting strategy based on the hand-crafted visual
features. In [Li et al.2009], each visual neighbor is treated
equally. In [Liu et al.2010], the consistency between visual
similarity and semantic similarity is explored to remove the
imprecise tags and add the relevant tags. A low-rank matrix
decomposition is introduced to address the tag refinement
problem in [Zhu et al.2010]. Gong et al. [Gong et al.2013]
proposed a model to explore the user-provided tag informa-
tion by clustering them as topics. In [Wu et al.2013], the
relevance between images and tags is learned by requiring it
to be consistent with the observed one and exploring the vi-
sual similarity. The dual sparse reconstruction approach was
proposed for social image tag completion in [Lin et al.2013].
The missing tags are complemented and the noisy tags are
removed by minimizing the tagging noise under the low-rank
matrix recovery framework in [Feng et al.2014]. In [Xue et
al.2016], image tagging is performed with multi-view repre-
sentation learning with the sum-of-squared-errors objective
function. Factor analysis model has been explored to discover
the tag relevance [Niu et al.2015], [Tang et al.2017]. The
tensor factorization model is proposed to learn the image-
tag relevance by minimizing with the sum-of-squared-errors
objective function between the learned image-tag-user tensor
and the observed one in [Tang et al.2017]. Most of the above
methods learn the desired image-tag relevance matrix by
minimizing the errors between it and the observed one with
different constraints.

Recent years, the deep neural networks, such as Convolu-
tional neural networks (CNNs) [Krizhevsky et al.2012], [Du
et al.2017b], have been widely used due to its amazing per-
formance in the visual-related applications [Du et al.2017a].
Consequently, many deep methods have been proposed to
learn the image-tag relevance. Rather than directly using the
CNN features, a deep nonnegative low-rank model is pro-
posed to refine tags by jointly exploring the low-rank model
and deep feature learning in [Li and Tang2017b]. In [Nguyen
et al.2017], the tag relevance learning is performed by using
deep transfer learning based on the tagging information and
visual features. A deep matrix factorization model is pro-
posed to refine tags of social images by jointly exploring the
deep learning and local learning under the matrix factoriza-
tion framework in [Li and Tang2017a]. In [Zhang et al.2018],
the user-provided tags are refined by using the deep neural
network as the image feature learning, as well as exploring
visual consistency, semantic dependency, and user-error spar-
sity simultaneously. A unified deep collaborative embedding
model is proposed by incorporating the deep learning and
factor analysis for the optimal compatibility of representation
learning and latent space discovery in [Li et al.2019]. It
integrates the weakly-supervised tagging information, image
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similarity, and tag correlation simultaneously and seamlessly
by the collective matrix factorization model. The sum-of-
squared-errors objective function with the Gaussian noise
assumption is formulated.

The aforementioned methods are usually based on the
Gaussian noise assumption. Different from them, we pro-
pose to investigate the probability distributions for tag-based
social image retrieval by introducing different probability
distribution assumptions.

B. MATRIX FACTORIZATION
Matrix Factorization (MF) has been widely used in differ-
ent application, which decomposes a matrix as the product
of two factor matrices. The traditional matrix factorization
model has the underlying Gaussian observation noise as-
sumption as the probabilistic interpretation in Probabilistic
Matrix Factorization (PMF) [Salakhutdinov and Mnih2008].
Some methods have been developed to improve the classic
matrix factorization model [Lee and Seung1999], [Chiang
et al.2015]. Nonnegative Matrix Factorization (NMF) [Lee
and Seung1999] requires each element of the latent matrices
to be nonnegative. Recently some deep matrix factorization
models have been proposed to learn a hierarchy of hid-
den representations in [Li and Tang2017a], [Trigeorgis et
al.2017]. Most of these matrix factorization methods are for-
mulated with the sum-of-squared-errors objective function.
The underlying assumption is the Gaussian noise, which
may be unsuitable in real-world applications. It is necessary
to investigate different probability distributions to formulate
the matrix factorization models. PMoEP [Cao et al.2016]
and LRMF-MoG [Dong et al.2017] leverage the mixture
of distributions to model the noises, yet they also take in
the complex structure. Therefore, in this work, we conduct
the study to investigate different probability distributions
under the matrix factorization framework for tag-based social
image retrieval.

III. CAUCHY MATRIX FACTORIZATION
In this section, we will investigate different probability distri-
bution assumptions and elaborate the proposed CMF method.

A. PRELIMINARIES
In this paper, we use bold uppercase characters and bold
lowercase characters to denote matrices and vectors, respec-
tively. The lowercase character is used to denote the scalar.
For any matrix A, ai denotes its i-th column vector while
aj is its j-th row vector. The (i, j)-element of A is denoted
by Aij For matrix operation, AT is the transposed matrix
of A, while Tr[A] is the trace of A if A is square. The
Frobenius norm of A ∈ Rm×n is defined as ‖A‖2F =∑m
i=1

∑n
j=1A

2
ij = Tr[ATA]. The `1-norm for A is defined

as ‖A‖1 =
∑m
i=1 ‖ai‖ =

∑m
i=1

∑n
j=1 |Aij |.

Considering a social image set, there are n images {xi}ni=1

associated with m user-provided tags C = {t1, t2, · · · , tm}.
For the i-th image, its observed relevance to tags is repre-
sented as a m-dimensional binary-valued vector {yi}. The

tagging matrix is denoted as Y = [y1, · · · ,yn] ∈ Rm×n.
The i-th row vector of Y corresponds to a tagging vector
of all the images with respect to the i-th tag. Yij = 1
indicates that xj is associated with the i-th tag, and Yij = 0
otherwise. For the tag relevance learning, an ideal tagging
matrix F ∈ {0, 1}m×n is desired.

Matrix factorization is to decompose the observed matrix
into two factor matrices U ∈ Rr×m and V ∈ Rr×n. The i-
th column of U is denoted as ui, while the j-th column of V
is denoted as vj . The traditional matrix factorization model,
such as Singular Value Decomposition (SVD), is formulated
as follows,

min
U,V

1

2
‖Y −UTV‖2F +

λ1
2
‖U‖2F +

λ2
2
‖V‖2F . (1)

The last two terms are introduced as the regularizers to avoid
overfitting with two positive parameters λ1 and λ2. Thus the
ideal tagging matrix F is obtained by F = UTV, where the
elementFij indicates whether the image xj is associated with
the tag ti.

B. INVESTIGATION
In this subsection, we investigate the impact of the noise
distribution hypothesis over matrix factorization. Since all of
them aim to estimate the posterior probability p(U,V|Y).
Through the simple Bayesian inference, the posterior dis-
tribution p(U,V|Y) of U and V given Y can be easily
obtained by,

p(U,V|Y) ∝ p(Y|U,V)p(U)p(V). (2)

The latent vectors ui and vj are assumed with zero-mean
spherical Gaussian priors.

p(U|σ2
U ) =

m∏
i=1

N (ui|0, σ2
UI), (3)

p(V|σ2
V ) =

n∏
j=1

N (vj |0, σ2
V I). (4)

Then, the posterior distribution p(U,V|Y) of U and V
given Y can be obtained. By maximizing the log of the
posterior distribution, we have the following problem,

max
U,V

m∏
i=1

n∏
j=1

p(Yij |Fij)
m∏
k=1

p(uk)

n∏
l=1

p(vl), (5)

which is equivalent to

max
U,V

m∑
i=1

n∑
j=1

ln p(Yij |Fij) + λ1 ‖U‖2F + λ2 ‖V‖2F . (6)

The regularization terms λ1 ‖U‖2F and λ2 ‖V‖2F are brought
in according to the log function over Gaussian prior, which
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is,
m∑
k=1

ln p(uk) +

n∑
l=1

ln p(vl)

=− 1

2σ2
U

m∑
k=1

uTk uk −
1

2σ2
V

n∑
l=1

vTl vl︸ ︷︷ ︸
Regularizations

+ C︸︷︷︸
Constants

.
(7)

Finally, according to Eq. (6), the main task is to seek the
probability p(Yij |Fij).

Gaussian. The traditional MF model in Eq. (1) has the
Gaussian noise assumption [Salakhutdinov and Mnih2008].
It assumes that each elements Eij of E = Y − F is subject
to Gaussian distribution with mean 0 and variance σ2.

p(Eij) = N (Eij |0, σ2) = N (Yij − uTi vj |0, σ2). (8)

The conditional distribution over the observed values is ob-
tained by,

p(Y|U,V, σ2) =

m∏
i=1

n∏
j=1

N (Yij |uTi vj , σ2). (9)

According to Eq. (6), we can obtain the same optimization
problem as the one in Eq. (1). The gradient descent algorithm
can be used to find a local minimum. The Gaussian distribu-
tion may perform well with small noise, but it is sensitive to
the noise of large magnitude.

Laplacian. For the social image tag refinement, there
are some missing tags. That is, some elements of Y are
unknown, which results in that the objective function with
the Frobenius norm in Eq. (1) is not the most appropriate.
The Laplacian distribution is often used to reduce sensitivity
to the outliers in the data [Eriksson and van den Hengel2010].
The Laplacian distribution with mean 0 and scale b is used to
model the noises and all the elements are independent.

p(Yij |Fij) = p(Eij) =
1

2b
exp(−|Eij |

b
). (10)

According to Eq. (6), we can have the following optimizing
problem with the `1-norm loss function.

min
U,V
‖Y −UTV‖1 + λ1 ‖U‖2F + λ2 ‖V‖2F . (11)

It is well known that the `1 norm is more robust to outliers
than the `2 norm. However, it does not enable to address the
dense noise.

Poisson. It is known that the Poisson distribution is used
to model the independent variables in whole numbers.

p(y) =
exp(−λ)λy

y!
(12)

Here λ is the mean value. Hence, by setting the mean value
to Fij , the Poisson distribution of Yij given Fij is defined as

p(Yij |Fij) =
exp(−Fij)F

Yij
ij

Yij !
. (13)

According to Eq. (6), by maximizing the log of the posterior
distribution, we have the following optimization problem.

min
U,V

m∑
i=1

n∑
j=1

[uTi vj − Yij ln(uTi vj)]

+λ1 ‖U‖2F + λ2 ‖V‖2F . (14)

Student-t. The Student-t distribution is a heavy tailed
generalization of the Gaussian distribution, which can handle
atypical observations [Archambeau et al.2006].

p(y) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(1 +
y2

ν
)−

ν+1
2 . (15)

Here Γ(·) denotes the Gamma function and ν > 0 is the num-
ber of degrees of freedom. Hence, the Student-t distribution
of Yij given Fij is defined as

p(Yij |Fij) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(1 +
(Yij − Fij)2

ν
)−

ν+1
2 . (16)

According to Eq. (6), we can have the posterior distribution
of U and V given Y. The objective function based on the
Student-t distribution is obtained by maximizing the log of
the posterior distribution.

min
U,V

m∑
i=1

n∑
j=1

ln(1 +
(Yij − uTi vj)

2

ν
)

+λ1 ‖U‖2F + λ2 ‖V‖2F . (17)

The Student-t distribution can avoid the disadvantages of
the Laplacian distribution and the Gaussian distribution, but
cannot well address the problem of large noises.

Logistic. The logistic distribution resembles the Gaussian
distribution in shape but has heavier tails. The noise Eij is
modeled by utilizing the logistic distribution with mean 0.

p(Eij) =
exp(−Eijb )

b[1 + exp(−Eijb )]2
. (18)

Here b is the scale parameter. According to Eq. (6), the
posterior distribution p(U,V|Y) can be obtained by the
simple Bayesian inference. By maximizing the log of the
posterior distribution, the matrix factorization model with
the logistic distribution can be formulated as the following
minimizing problem.

min
U,V

m∑
i=1

n∑
j=1

(
Yij − uTi vj

b
+ 2 ln(1 + exp(−Yij − uTi vj

b
)))

+λ1 ‖U‖2F + λ2 ‖V‖2F . (19)

The behavior of the Logistic distribution in modeling noise is
very similar to the Gaussian distribution.
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C. CMF
Actually, there are many types of noise in the real-world
data, such as sparse, dense, small as well as large [Xie
and Xing2014]. And it is impossible to know the intrinsic
probability distribution of data in the real world. The above
distributions enable to deal with one kind of noise. For
example, the Gaussian distribution is able to address the
problem of small noise but sensitive to large noise. That is,
the above noise assumptions may be unsuitable to model the
real-world data. It is well known that the Cauchy distribution
is smooth at the value of the location parameter, which makes
it suitable to model the dense noise. Besides, it is capable
of modeling the large noise due to its heavy tail [Xie and
Xing2014]. That is, it has the ability to deal with various
types of noise. Therefore, we propose to explore the Cauchy
distribution for social tag noise modeling.

The noise Eij is modeled by utilizing the Cauchy distribu-
tion with local parameter zero.

p(Eij) =
b

π

1

b2 + E2
ij

. (20)

Here b is the scale parameter. The Cauchy distribution of Yij
given Fij is defined as,

p(Yij |Fij) =
b

π

1

b2 + (Yij − Fij)2
. (21)

The Cauchy distribution of Y given F is defined as follows.

p(Y|U,V) =

m∏
i=1

n∏
j=1

b

π

1

b2 + (Yij − Fij)2
. (22)

According to Eq. (6), the posterior distribution p(U,V|Y)
of U and V given Y can be obtained. By maximizing the log
of the posterior distribution, we have the following problem.

max
U,V
−

m∑
i=1

n∑
j=1

ln(b2 + (Yij − uTi vj)
2)

−(λ1 ‖U‖2F + λ2 ‖V‖2F ). (23)

The above maximizing problem is equivalent to the following
minimizing problem.

min
U,V

m∑
i=1

n∑
j=1

ln(b2 + (Yij − uTi vj)
2)

+λ1 ‖U‖2F + λ2 ‖V‖2F . (24)

The above problem can be efficiently solved by the gradient
descent algorithm, which is an iterative process. Suppose L
is the observed value of the loss function, in each iteration,
we compute the gradients via ∂L/∂U and ∂L/∂V, and
update the parameters U and V with the gradients. After
T iterations, the U and V are considered to be the optimal
parameters. In our experiments, we leverage Adagrad [Duchi
et al.2011] to update the parameters, and T is fixed to 2000.

TABLE 1: Statistics of the community-contributed datasets
with image and tag counts in the format mean / maximum.

MIRFlickr NUS-WIDE
Tag size 457 3137

Concept size 18 81
Image size 25,000 269,648

Tags per image 2.7 / 45 7.9 / 201
Concepts per image 4.7 / 17 1.9 / 13

Images per tag 145.4 / 1,483 677.1 / 20,140
Images per concept 3,102.8 / 10,373 6,220.3 / 74,190

IV. EXPERIMENTS
In this section, we conduct experiments to evaluate the
performance of the proposed Cauchy matrix factorization
method for tag-based social image retrieval.

A. DATASET
Experiments are conducted on two social image datasets, i.e.,
MIRFlickr [Huiskes and Lew2008] and NUS-WIDE [Chua
et al.2009], which have been widely used for social image
understanding and retrieval tasks. Each image is associated
with several user-provided tags.

The MIRFlickr dataset contains 25, 000 images associ-
ated with 1, 386 tags. Due to some obviously noisy tags,
tags that appear less than 50 times are removed, resulting
in a vocabulary of 457 tags. The ground-truth annotations
of 18 concepts are preserved, which are used to evaluate the
performance.

The NUS-WIDE dataset has 269, 648 images associated
with 5, 018 tags. Due to some misspelt or meaningless tags,
those tags whose occurrence numbers below 125 are re-
moved. And we obtained 3, 137 unique tags. The ground-
truth annotations of 81 concepts are also provided.

Some statistics of this social image dataset are summarized
in Table 1.

B. SETTINGS
To evaluate the ranking order of tag-based image retrieval,
experimental results with single-tag queries are analyzed. It
is well known that Average Precision (AP) is the widely-used
measure used for search. Mean Average Precision (mAP) is
obtained by averaging AP over all the concepts. In experi-
ments, mAP is used to evaluate the performance. Besides, the
area under the receiver operating characteristic curve (AUC),
has been used as the standard and more faithful measure for
model comparison in many applications. Thus, AUC is taken
into account as the evaluation metric. In experiments, the
microaveraging and macroaveraging measures are introduced
to evaluate the global performance across multiple concepts
and the average performance of all the concepts.

For comparison, the original user-provided tags are
adopted to calculate the results, which is used as the baseline.
The matrix factorization methods with different probability
distributions, denoted as GMF (Gaussian), LaMF (Lapla-
cian), PoMF (Poisson), StMF (Student-t) and LoMF (Logis-
tic), are compared to show the effectiveness of CMF. There
are several parameters to be set in advance, such as the
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dimension r and the overfitting parameters λ1 and λ2. There
are some other parameters, such as the degree of freedom ν
for the Student-t distribution, the scale parameter b for the
Cauchy distribution, as well as the scale parameter b for the
logistic distribution. r is empirically set to 150 and 300 for
MIRFlickr and NUS-WIDE, respectively. We set λ1 = λ2 =
0.005 empirically. For other parameters, the grid-search strat-
egy is utilized over {0.001, 0.01, 0.1, 1, 10, 100, 1000}. To
alleviate the instability introduced by initialization, experi-
ments are independently repeated 5 times, and the average
values are reported.

C. RESULTS
We first carry out experiments to evaluate the performance
for tag-based social image retrieval in terms of mAP. The
results on the MIRFlickr and NUS-WIDE datasests are pre-
sented in Figure 1.

From the results, it can be observed that all the matrix
factorization models improve the quality of tags and make
the results of tag-based image search better. Second, CMF
achieves the best retrieval performance, which demonstrates
that the Cauchy probability distribution may be more suitable
to model the tagging noise of social images. The Cauchy
probability distribution can deal with several forms of noise
patterns [Xie and Xing2014]. Third, LaMF is better than
GMF. The Gaussian probability distribution is able to well
model the small noise and the Laplacian probability dis-
tribution is suitable for the sparse noise. Thus, the noise
of the user-provided tags is somewhat sparse. Forth, the
performance of StMF is slightly superior to the performance
of GMF, but worse than the performance of CMF and LaMF.
Fifth, LoMF is just better than the original tagging and worse
than other methods. Besides, PoMF achieves better results in
terms of mAP than the original tags and LoMF, but worse
results than other methods. It may be that it is somewhat
more suitable to model the tagging noise than the logistic
distribution. In a word, it may be suitable to construct models
based on the Cauchy noise assumption for tag-based social
image retrieval, and it is necessary and useful to conduct
experiments to investigate the effectiveness of different noise
assumptions.

Besides, additional experiments are conducted to compare
the performance in terms of MicroAUC and MacroAUC,
and the corresponding results are shown in Table 2 and
Table 3. From the results, it can be seen that CMF gains the
best results in terms of AUC, which is consistent with the
observations in the above experiments. That is, the Cauchy
distribution is appropriate for noise modeling in the tag-based
image retrieval task. Besides, the performance is improved by
dealing with the noise of the user-provided tags with these
several probability distributions. That is, the models based
on these probability distributions can reduce the tag noises to
some extent. GMF also enables to address the tagging noise
but performs worse than LaMF. Furthermore, the similar
observations to the ones from the results in terms of mAP
can be obviously seen. Finally, it is meaningful to adopt a

TABLE 2: Experimental results (mean microauc ± standard
deviation, mean macroauc± standard deviation) on the MIR-
Flickr dataset.

Method MicroAUC MacroAUC
Baseline 0.642 ± 0 0.634 ± 0

GMF 0.653 ± 0.005 0.646 ± 0.003
LaMF 0.664 ± 0.006 0.649 ± 0.004
PoMF 0.670 ± 0.003 0.654 ± 0.004
StMF 0.679 ± 0.006 0.663 ± 0.001
LoMF 0.654 ± 0.005 0.641 ± 0.003
CMF 0.692 ± 0.002 0.667 ± 0.002

TABLE 3: Experimental results (mean microauc ± standard
deviation, mean macroauc± standard deviation) on the NUS-
WIDE dataset.

Method MicroAUC MacroAUC
Baseline 0.752 ± 0 0.642 ± 0

GMF 0.769 ± 0.003 0.661 ± 0.002
LaMF 0.775 ± 0.005 0.710 ± 0.006
PoMF 0.772 ± 0.004 0.691 ± 0.002
StMF 0.779 ± 0.005 0.709 ± 0.003
LoMF 0.763 ± 0.003 0.677 ± 0.002
CMF 0.785 ± 0.002 0.737 ± 0.001

suitable assumption to model the noise of social images.
It is supposed to construct the learning model based on

the appropriate probability distribution for the desired appli-
cations. Although the Gaussian distribution has been widely
used, it may be unsuitable in the real-world tasks.

D. SENSITIVENESS ANALYSIS
The dimension r is an important hyper-parameter for matrix
factorization based methods. In this section, experiments are
conducted to evaluate the effect of r. The results in terms of
mAP are presented in Figure 2.

It can be easily observed that r has somewhat effort on
the performance of tag-based image search. And relatively,
its values have great impacts on performance based on the
Student-t probability distribution. If the value of r is set to a
small value, the performance becomes poor, which is even
worse than the performance of the original user-provided
tags. When the value of the parameter r becomes larger,
the results of the matrix factorization models with different
probability distributions become better. But the computa-
tional cost increases with large value of the parameter r.
By comprehensively considering the effectiveness and the
computational cost, we set r to 150 and 300 for all the com-
pared methods on the MIRFlick and NUS-WIDE datasets
in experiments, respectively. How to adaptively identify the
value of the parameter r will be studied in our future work.

The scale parameter b in Cauchy Distribution specifies
the half-width at half-maximum, which closely reflects the
status of the tag noises. With the exploration over the im-
pact of b, we could obtain the property of noises. Figure 3
demonstrates that the best bs for both datasets are around
10, which indicates the tag noises in both datasets respect
to the similar distribution. When b is too small, CMF always
generates a zero-matrix, where the mAP values of 0.13 in

6 VOLUME 4, 2016



0.20

0.25

0.30

0.35

0.40

Baseline
GMF LaMF

PoMF
StMF LoMF

CMF

(a) MIRFlickr

m
A
P

mAP

0.2709

0.3437 0.3492

0.3238

0.3549

0.3043

0.3757

0.20

0.25

0.30

0.35

0.40

Baseline
GMF LaMF

PoMF
StMF LoMF

CMF

(b) NUS-WIDE

m
A
P

mAP

0.3188
0.3297 0.3345

0.3217
0.3306

0.3209

0.3705

FIGURE 1: The performance of tag-based social image retrieval on the MIRFlickr and NUS-WIDE datasets in terms of mAP.

50 100 150 200 300 400

r

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

m
A

P

GMF

LaMF

PoMF

StMF

LoMF

CMF

(a) MIRFlickr

100 200 300 400 500

r

0.15

0.2

0.25

0.3

0.35

0.4

m
A

P

GMF

LaMF

PoMF

StMF

LoMF

CMF

(b) NUS-WIDE

FIGURE 2: The results in terms of mAP by varying the value of r on the MIRFlickr and NUS-WIDE datasets for tag-based
social image retrieval.

MIRFLickr and 0.03 in NUS-WIDE are caused by the all-
zero predictions. With a proper estimation of b (i.e. b = 10),
CMF performs well. In addition, the too-large b also reduces
the performance of CMF.

E. DISCUSSION AND EXTENSION
This work investigates the noise modeling for tag-based
image retrieval, which is meaningful for many practical ap-
plications. For real-world data, it is normal that there exists
noise. Thus, it is necessary to propose methods by modeling
the noise. The widely-used strategy is to adopt the Gaussian
noise assumption, which leads to the sum-of-squared-errors
objective function. However, it is unnecessary to know the
real noise probability distribution of data. Consequently,
we conduct investigations about the noise assumptions and
propose a new method CMF, which can well address various
types of noise for tag-based image retrieval. Of course, it can
be applied to many learning models. The models based on
the sum-of-squared-errors objective function can be updated
by introducing the new loss function, which demonstrates
the important applicable and reference significance of the
proposed method.

The proposed method can be easily extended. First, differ-

ent regularization terms can be introduced to achieve better
performance, such as the smooth regularization, the Elastic
net regularization, the local structure regularization and so
on. Second, the proposed method can be extended to the deep
learning model by simultaneously addressing the out-of-the-
sample problem as in [Li and Tang2017a], [Li et al.2019].
They enable to achieve better results for tag-based image
retrieval. However, it is not our focus in this work. We
focus on investigating noise modeling for tag-based image
retrieval and proposing a new method based on the suitable
noise assumption. How to design a better method will be
researched in the future.

V. CONCLUSION
In this work, we propose a new Cauchy Matrix Factorization
(CMF) method for tag-based social image retrieval. The
Cauchy distribution is explored to model noise between the
observed value and the ideal one. The proposed method is
robust to various kinds of noise. Experiments are conducted
to evaluate the effectiveness of CMF and the results demon-
strate that CMF is more suitable to model the tagging noise of
social images. Some extensions are also discussed. In the fu-
ture, how to adaptively learn the loss function corresponding
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to the evaluation measure and adaptively set the parameters
may be important research directions.
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