
111

Modeling Embedding Dimension Correlations via
Convolutional Neural Collaborative Filtering

XIAOYU DU, University of Electronic Science and Technology of China, China
XIANGNAN HE∗, University of Science and Technology of China, China
FAJIE YUAN, Platform and Content Group (PCG) of Tencent, China
JINHUI TANG, Nanjing University of Science and Technology, China
ZHIGUANG QIN, University of Electronic Science and Technology of China, China
TAT-SENG CHUA, National University of Singapore, Singapore

As the core of recommender system, collaborative filtering (CF) models the affinity between a user and an
item from historical user-item interactions, such as clicks, purchases, and so on. Benefited from the strong
representation power, neural networks have recently revolutionized the recommendation research, setting up a
new standard for CF. However, existing neural recommender models do not explicitly consider the correlations
among embedding dimensions, making them less effective in modeling the interaction function between
users and items. In this work, we emphasize on modeling the correlations among embedding dimensions in
neural networks to pursue higher effectiveness for CF. We propose a novel and general neural collaborative
filtering framework, namely ConvNCF, which is featured with two designs: 1) applying outer product on user
embedding and item embedding to explicitly model the pairwise correlations between embedding dimensions,
and 2) employing convolutional neural network above the outer product to learn the high-order correlations
among embedding dimensions. To justify our proposal, we present three instantiations of ConvNCF by using
different inputs to represent a user and conduct experiments on two real-world datasets. Extensive results
verify the utility of modeling embedding dimension correlations with ConvNCF, which outperforms several
competitive CF methods.

CCS Concepts: • Information systems→ Collaborative filtering; Recommender systems; • Comput-
ing methodologies → Neural networks.

Additional Key Words and Phrases: Neural Collaborative Filtering, Convolutional Neural Network, Embedding
Dimension Correlation, Recommender System

ACM Reference Format:
Xiaoyu Du, Xiangnan He, Fajie Yuan, Jinhui Tang, Zhiguang Qin, and Tat-Seng Chua. 2019. Modeling Em-
bedding Dimension Correlations via Convolutional Neural Collaborative Filtering. ACM Transactions on
Information Systems 0, 0, Article 111 (2019), 23 pages. https://doi.org/10.1145/XXXXXXXXXX

∗Xiangnan He is the corresponding author.

Authors’ addresses: Xiaoyu Du, duxy.me@gmail.com, University of Electronic Science and Technology of China, Chengdu,
Sichuan, China; Xiangnan He, xiangnanhe@gmail.com, University of Science and Technology of China, Hefei, Anhui,
China; Fajie Yuan, fajieyuan@tencent.com, Platform and Content Group (PCG) of Tencent, Shenzhen, Guangdong, China;
Jinhui Tang, jinhuitang@njust.edu.cn, Nanjing University of Science and Technology, Nanjing, Jiangsu, China; Zhiguang Qin,
qinzg@uestc.edu.cn, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Tat-Seng Chua,
dcscts@nus.edu.sg, National University of Singapore, Singapore, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1046-8188/2019/0-ART111 $15.00
https://doi.org/10.1145/XXXXXXXXXX

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

https://doi.org/10.1145/XXXXXXXXXX
https://doi.org/10.1145/XXXXXXXXXX

111:2 Xiaoyu Du, et al.

.

.
.

.
.

.

Feature Map 1
Feature Map 2

Feature Map 32

64x64
Feature Map 3

32x32

Outer Product

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

16x16

8x8 4x4
2x2 1x1

Prediction

U
ser

Em
bedding

Item
Em

bedding

1x64

1x64

yui
^

Training
BPR

Embedding Layer Convolutional Layers

E(u)Uf

(i)If
Interaction Map

Fig. 1. An illustration of our proposed Convolutional Neural Collaborative Filtering (ConvNCF) solution.
Following the embedding layer is an outer product layer, which generates a 2D matrix (interaction map) that
explicitly captures the pairwise correlations between embedding dimensions. The interaction map is then fed
into a CNN to model high-order correlations to obtain the final prediction.

1 INTRODUCTION
Recommender system plays a vital role in the era of information explosion. It not only alleviates
the information overload issue and facilities the information seeking for users, but also serves as
an effective solution to increase the traffic and revenue for service providers. Given its extensive
use in Web applications like E-commerce [60], social media [55], news portal [53], and music
sites [6], its importance cannot be overstated as a highly valuable learning system. For example, it
is reported that about 30% traffic in Amazon are brought by recommendations [51], and the Netflix
recommender system has contributed over $1 billion revenue per year [19].

Modern recommender systems typically rely on collaborative filtering (and/or its content/context
-aware variants) to predict a user’s preference on unknown items [2, 15, 29, 66]. The learning
objective can be abstracted as estimating the affinity score between a user and an item, such that
the recommendation list for a user can be obtained by ranking the candidate items according to
the affinity scores. Generally speaking, the key to build a CF model lies in twofold: 1) how to
represent a user and an item, and 2) how to build the predictive function based on user and item
representations. As a pioneering CF model, matrix factorization (MF) [37] embeds a user and an item
into vector representations, and formulates the predictive function as the inner product between
user embedding vector item embedding vector. Soon after MF was introduced to recommender
system, it becomes prevalent in recommendation research with many variants developed. Some
representative variants include FISM (factored item similarity model) [35] and SVD++ [37] which
enrich the user embedding with the embeddings of the user’s interacted items, and FM (factorization
machine) [49] and SVDfeature [8, 63] which extend the predictive function with the inner product
between the embeddings of content (and/or context) features.

Without exaggeration, we would say that factorization methods are the most popular approach
and play a dominant role in recommendation research in the past decade. In essence, MF leads to the
de facto standard for modeling the CF effect — measuring the user-item affinity with inner product
in the embedding space. While inner product is effective in capturing the low-rank structure in
sparse user-item interaction data [4], its simplicity (i.e., no learnable parameters are involved)
and linearity (i.e., no any nonlinear transformations) limit the expressive power of the predictive
function. For example, He et al. [28] demonstrated that it may lead to unexpected ranking loss
when the embedding size is not sufficiently large, and Hsieh et al. [33] illustrated the cases that
inner product may fail due to its violation of the triangle inequality.
To address the limitations of factorization methods and move towards the next generation of

recommender systems, neural network models have been explored for CF in recent years. To date,

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:3

most neural recommender models can be described within the neural collaborative filtering (NCF)
framework [28], which use neural networks to emphasize on either the user/item representation
learning part [23, 57, 58] or the predictive function part [7, 62, 64]. Although these methods have
achieved substantial improvements, we argue a common drawback is that, they forgo consider-
ing the correlations among embedding dimensions in the predictive function. To be specific, the
mainstream design of the predictive function is to place a multi-layer perceptron (MLP) above the
concatenation (which retains the original information) [28] or element-wise product (which sub-
sumes the inner product) [64] of user embedding and item embedding. Apparently, both operations
assume the embedding dimensions are independent of each other, that is, no correlations among the
dimensions are captured. Arguably, the following MLP network can approximate any continuous
function [14], therefore it might be capable of capturing the possible correlations. However, such
process is rather implicit and as such, it may be ineffective in capturing certain relations — an
evidence is from [4] showing that much more parameters have to be used in order to approximate
the simple multiplicative relation.
In this work, we highlight the importance of modeling the correlations among embedding

dimensions for CF, proposing a new CF solution named Convolutional Neural Collaborative
Filtering (ConvNCF). As illustrated in Figure 1, ConvNCF has two characteristics making it distinct
from existing models: 1) above user embedding and item embedding, we employ outer product
(rather than concatenation or inner product) so as to explicitly capture the pairwise correlations
between embedding dimensions, and 2) above the matrix generated by outer product, we employ
convolution neural network (CNN) so as to learn high-order correlations in a hierarchical way. As
ConvNCF concerns only the design of the predictive function, it is a general framework that can be
specified with any embedding function that results in user embedding and item embedding. To
show this universality, we devise three instantiations of ConvNCF by using the embedding function
of three classical CF models — 1) MF [50], which projects a user’s ID into user embedding, 2)
FISM [35], which projects a user’s interacted items into user embedding, and 3) SVD++ [37], which
projects a user’s ID and interacted items into user embedding. We term the three specific methods
as ConvNCF-MF, ConvNCF-FISM, and ConvNCF-SVD++, respectively, and conduct experiments
on two real-world datasets to explore their effectiveness. Comparative results show that our
ConvNCF methods outperform state-of-the-art CF methods in item recommendation, and extensive
ablation studies verify the usefulness of both outer product and CNN in modeling embedding
dimension correlations. To facilitate the research community, we have released the codes in:
https://github.com/duxy-me/ConvNCF.

Note that a preliminary version of this work has been published as a conference paper in IJCAI
2018 [25]. We summarize the main changes as follows:

(1) Introduction (Section 1). We reconstruct the abstract and introduction to emphasize the motiva-
tion of this extended version.

(2) Methods (Section 4 and Section 5). We present ConvNCF as a general CF framework, and specify
three methods that differ in the user embedding function to demonstrate its universality. The
preliminary version only presents one specific method.

(3) Experiments (Section 6). This section is complemented with results of the two additional
methods — ConvNCF-FISM and ConvNCF-SVD++ — to further justify the effectiveness of our
proposal.

(4) Preliminaries (Section 3) and Related Work (Section 2). The two sections are newly added to
make the paper more complete and self-contained.

The main contributions of this paper are as follows.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

https://github.com/duxy-me/ConvNCF

111:4 Xiaoyu Du, et al.

• We propose a neural network framework named ConvNCF for CF, which explicitly models
embedding dimension correlations and uses CNN to learn high-order correlations from locally to
globally in a hierarchical way.

• We implement three instantiations of ConvNCF that use different embedding functions to
demonstrate the universality and effectiveness of ConvNCF.

• This is the first work that explores the utility of capturing the correlations among embedding
dimensions, providing a new path to improve recommendation models.

2 RELATEDWORK
This work lies in the topic of neural collaborative filtering. In this section, we first give a review of
collaborative filtering on the embedding and interaction function, and then introduce the neural
network based collaborative filtering. At last, to deepen the comprehension over neural network,
we demonstrate the latest CNN developments and its applications in recommender systems.

2.1 Collaborative Filtering
User behaviors on the online platforms (i.e., purchasing, browsing or commenting) imply user
preferences. By building the user-item interactions through these behavior records, Collaborative
Filtering (CF) is able to mine user hidden preferences. According to the types of user behaviors,
CF can be usually classified into two categories, namely explicit and implicit feedback based CF.
Explicit feedback data such as user ratings directly indicates user’s active evaluation. It has been a
significant research task in the last decades. To estimate the accurate score toward a specific item,
various factorization models with a regression loss have been proposed. Particularly, models such
as SVD++ [37], Localized MF [65], Hierarchical MF [54], Social-aware MF [67], and CrossPlatform
MF [5] have gained great success on specific tasks due to the ability to model specific contextual
features. Another type of interactions is known as implicit feedback, which records any user
behaviors (e.g., what they watch and what item they buy). Implicit feedback data is more prevalent
in practice since it does not require the user to express his taste explicitly [50]. Hence, in this paper
we aim to build recommendation algorithms based on implicit user feedback.

In most practical recommender systems, users usually only focus on the top ranked items rather
than all rating scores. From this perspective, CF with implicit feedback seems like a personalized
ranking problem rather than a score predicting problem. To address this problem, BPR [50] loss is
proposed to model the relative preferences between a pair of interactions, one of which is observed
while the other is unobserved. The predicting score of the observed interaction must be higher
than that of the unobserved one. Through this ranking scheme, BPR successfully trains a number
of CF models [6, 7], including both shallow factorization models [50] and deep neural network
model [7]. In fact, BPR is currently the dominant loss for CF models and has many improvements,
such as improvedBPR [16, 61] by changing the negative sampling to select informative examples
and APR [26] by applying adversarial learning to enhance the model robustness.

2.2 Matrix Factorization
Matrix Factorization (MF) is a significant technique in many domains [43, 44] due to its ability
to distill co-occurrence patterns [45]. Within the variant CF models, MF is also an important
class. Traditional MF algorithms work by decomposing the user-item interaction matrix into inner
product of two lower-rank matrices [38]. Recently, the models representing users and items with
two lower-rank matrices and predicting the interactions by inner product are considered to be MF
family. Its subsequent works mainly focus on devising the user embedding and item embedding.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:5

The earliest MF model is FUNK-SVD1 that assigns a latent vector to each of the users and items.
The prediction of FUNK-SVD is the inner product of the vectors. Despite the name, FUNK-SVD
apply no singular value decomposition to get the model but use learning-based approach. Thus the
embedding is easily extended with more complex structures. FISM [35] combines the set of features
from interacted items as user embedding. NAIS [27] weights the addition during combining process.
SVD++ [37] synthesizes latent vectors and the item correlations to construct hybrid embedding.
DeepMF [58] applies MLP [18] over the original embedding to abstract a high-level embedding.
Additionally, the embedding could be generated with the content and context features [10, 47, 56].
VBPR [23] takes latent vector composed with image features extracted by AlexNet [39] as item
embedding. CCF [42] proposes a content-based CF for news topic. Music recommendation [12]
integrates the content-based feature to express the song. Some works even incorporate external
knowledge [9, 46]. It is notable that some of these models were proposed for explicit feedback but
they also perform well for implicit feedback by training with BPR loss [50].

2.3 Neural Collaborative Filtering
Neural network is known as a powerful data-based model well-performed in a wide range of
domains. It is always described as a pipeline of layers. To meet the characteristics of different
tasks, various novel structures of the neural network are proposed recently [17, 28, 48]. Multi-layer
Perceptron (MLP) [18] is the fundamental neural network, the main body of which is composed
of fully-connected layers, that outputs a projection of input features. Convolutional nerual net-
work (CNN) [22, 39] reduces the number of parameters of MLP and increases the number of layers
with convolution operations, which automatically extract partial projection with convolution kernel.
Attention mechanism [20, 21] adapts the feature weights based on some auxiliary information, in
order to capture more effective features. Due to the extraordinary performance on images, CNN
has become the dominant module in the domain of computer vision. More than that, both MLP and
CNN models are widely used in the natural language processing [31] and recommender system [28]
domains.

Neural collaborative filtering (NCF) is a family of models using neural network for the CF task.
Most NCF methods focus on devising powerful interaction functions above the embedding layer
instead of using the simple inner product. A popular substitute of inner product is to improve the
element-wise product, such as weighted element-wise product [28], or a MLP over the element-wise
product [64].

In the NCF task, MLP [18] has been extensively investigated in recent years, due to its simplicity
and effectiveness. The basic idea of MLP is to stack multiple fully-connected layers, each of which
are usually followed by a non-linear activation layer. For example, NeuMF [28] devises a two-path
model that one of the path is a MLP on top of the concatenation of user embedding and item
embedding, and the other is a MLP above element-wise product of the embeddings. JRL [64] takes
a MLP over the element-wised product of embeddings as input. Similarly, deepMF [58] learns
a high-level embedding with MLP. CDAE [57] on the other way devises an auto-encoder with
fully-connected layers. Despite the success of MLP, its deficiency cannot be ignored. The models
with MLP are easy to overfit and usually need more computing resources due to the large amount
of parameters.

2.4 Convolutional Neural Network
In this work, we mainly investigate the utility of convolutional neural network (CNN) in the CF
task. The core of CNN is known as a partial feature extractor (i.e., convolutional layer). In each

1http://sifter.org/ simon/journal/20061211.html

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:6 Xiaoyu Du, et al.

convolution layer, the output feature is not a projection of the whole input layer but several maps
composed of partial features generated by convolution kernels. The key to obtain effective features
with fewer parameters is that the partial features in the same map share a group of convolution
kernels. Thus, compared with the fully-connected layer used in MLP, convolutional layer has much
fewer parameters, which leads to more robust learning process and takes up fewer computing
resources. Due to these advantages, we believe CNN has the potential to substitute the MLP in the
CF task with less computing cost and better recommendation accuracy.
In fact, several works that integrate CNN within the recommendation models have achieved

success. The key idea of these works is to improve the original methods by feeding the recom-
memnder system with additional CNN features. One typical work is VBPR [23] that leverages
the image features extracted with Alexnet [39] to express the items more accurately. Similarly,
ConvMF [36] generates document latent features with a textual CNN. Though these works can
provide more accurate auxiliary information, they rarely change the core pattern in predicting
preference from the model perspective. NextItNet [62] is a newly proposed CNN model for the
session-based recommendation. It combines masked filters with 1D dilated convolutions [59] to
increase the receptive fields when modeling long-range session data. Since this work targets at
building a generic recommendation framework for traditional CF scenarios, we omit the detailed
discussion of NextItNet.

3 PRELIMINARIES
This section presents some technical preliminaries to the work. We first introduce the problem
formulation of recommendation, and then discuss the recently proposed neural collaborative
filtering framework [28]. For the ease of reading, we use bold uppercase letter (e.g., P) to denote
a matrix, bold lowercase letter to denote a vector (e.g., pu), and calligraphic uppercase letter to
denote a tensor (e.g., E). Moreover, scalar pu,k denotes the (u,k)-th element of matrix P, and vector
pu denotes the u-th row vector in P. Let E be 3D tensor, then scalar ea,b,c denotes the (a,b, c)-th
element of tensor E, and vector ea,b denotes the slice of E at the element (a,b). Table 1 and Table 2
summarize the brief parameters and abbreviations used in this paper, respectively.

3.1 Problem Formulation
Recommendation is a large-scale personalized ranking task, which generates a distinct ranking list
for each user. In model-based CF methods, the items are ranked by a predictive model ŷui , which
estimates how likely the user u will consume the item i . That is, ŷui gives a high score if the user u
is likely to consume the item i , otherwise it gives a low score.
The predictive function ŷui is trained by learning parameters on the observed user-item inter-

actions. LetM and N denote the number of users and items respectively, the observed user-item
interaction data is represented as a matrix Y ∈ RM×N . The element yui located at u-th row and i-th
column denotes the preference of user u on item i . In most real-world scenarios, the interaction
data is implicit feedback that records user behaviours, such as clicking, browsing, purchasing, etc.
In this case, yui is usually expressed as a binary variable to denote the user preference:

yui =

{
1 if (u, i) is observed,
0 otherwise.

(1)

After the model is trained to fit the interaction data well, during the testing phase that recom-
mends items to user u, we evaluate ŷui on all candidate items (e.g., items that are not interacted by
the user or promotion items), and rank the items based on the values.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:7

Table 1. Notations used in This Paper

Symbol Definition
u, i the ids for user and item, respectively
M ,N the numbers of users and items, respectively
K the embedding size
Y the observed user-item interaction matrix
yui the observed interaction between user u and item i
ŷui the predicted interaction between user u and item i
f U (u) the function to capture the embedding of user u
f I (i) the function to capture the embedding of item i
F (f U (u), f I (i)) the function to merge the input embedding f U (u) and f I (i)
E the interaction map
Elc the c-th feature map in convolutional layer l
El the 3D feature map of Layer l
T l the 4D convolutional kernel for Layer l
bl the bias term for Layer l
w the weight vector for the prediction layer
Θ∗ the trainable parameters
λ∗ the hyper parameters for regularizations
P the user embedding matrix
Q the item embedding matrix
Ru the set of items interacted by user u

Table 2. Abbreviations used in This Paper

Abbr. Meaning
MF Matrix Factorization
FM Factorization Machine
CF Collaborative Filtering
NCF Neural Collaborative Filtering
ConvNCF Convolutional Neural Collaborative Filtering
MLP Multi-Layer Perceptron
CNN Convolutional Neural Network

3.2 Neural Collaborative Filtering
There are two key ingredients in developing a CF model: 1) how to represent a user and an item,
and 2) how to build the predictive function based on user and item representations. In most cases,
the users and items are represented as embeddings. Since we will present common embedding
methods for CF in Section 5, here we discuss more on the predictive function.

Neural collaborative filtering (NCF) [28] proposes to parameterize the predictive function with
feed-forward neural networks. Owing to the strong representation ability of neural networks in
theory, NCF has been recognized as an effective approach to model user-item interactions and

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:8 Xiaoyu Du, et al.

become a prevalent choice [7, 58, 64]. The predictive function in NCF can be abstracted as follows 2:

ϕ0 = F (f U (u), f I (i)),

ϕl = Ll (ϕl−1), for l = 1...L

ŷui = wTϕL,

(2)

where f U (·) and f I (·) denote the embedding function for users and items, respectively; F (·) denotes
the merge function that combines user embedding and item embedding to feed to hidden layers;
Ll denotes the transformation function of the l−th hidden layer, ϕl denotes the output of the l−th
layer; ϕL denotes the output of the last layer, and vector w is to project ϕL to the final prediction
score. Note that NCF presents a general framework such that each module in the framework is
subjected to design.
Next, we concentrate on the merge function F (·) used in existing methods. The two most

prevalent choices in recommendation literature [1, 7, 11, 28, 58, 64] are element-wise product and
concatenation.

Element-wise Product generates the combined vector by multiplying the corresponding di-
mension of user embedding and item embedding, that is,

F (f U (u), f I (i)) =
©«
f U (u)1 · f

I (i)1,
f U (u)2 · f

I (i)2,
· · · ,

f U (u)K · f I (i)K

ª®®®¬ (3)

The rationality of this operation for CF stems from inner product — by summing the elements
in the resultant vector, it is equivalent to the output of inner product. Note that inner product
is an effective approach to measure the vector similarity, having been widely used in classic CF
models [35, 37]. As such, many neural network take it for granted to use element-wise product,
such as JRL [64] and NeuMF [28].

Concatenation appends the elements in item embedding to the user embedding vector:

F (f U (u), f I (i)) = [f U (u)1, ..., f
U (u)K , f

I (i)1, ..., f
I (i)K]

T (4)

This operation keeps the raw information in user and item embeddings, without explicitly modeling
any interaction between them. As such, the model has to expect the following hidden layers to
learn the interaction signal in the embeddings.

It is worth highlighting that onemain drawback of the twomerge functions is that, the embedding
dimensions are assumed to be independent. In other words, no correlations among the dimensions
are captured — in element-wise product only the interactions of the same dimension are modeled,
whereas in concatenation no any interactions are considered. Although the following hidden layers
might be able to learn the correlations, such process is rather implicit and there is no guarantee that
the desired correlations can be successfully captured. One empirical evidence is that the MLP (i.e.,
concatenation followed by three fully connected hidden layers) even underperforms the simple MF
model [28]. Another evidence is from [52], which shows that MLP has to use much more parameters
to approximate the inner product well, indicating the limitation in representation ability.

4 CONVNCF FRAMEWORK
This section presents our proposed ConvNCF framework. We first give an overview of the frame-
work, followed by elaborating the key design of outer product and convolutional layers for model-
ing the embedding dimension correlations. Finally we describe the model prediction and training
method.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:9

4.1 Framework Overview
We focus on the neural structures since the neural network-based models in recent works always
perform well in various learning models [7, 28, 34]. Then we select CNN as our fundamental neural
structure because, 1) the feature map performs as a 2D matrix, which naturally adapts to the
input of CNN, 2) the subregion in the feature map has a spatial relationship, i.e., the correlation
among multiple dimensions, which could be represented by convolutional filter, and 3) through the
convolutional layers, the correlations among all embedding dimensions could be captured from
locally to globally. Compared with MLP, the usual neural structure in neural recommendation
models, CNN has fewer parameters which lead to less over-fitting. Therefore, we propose the
CNN-based framework, ConvNCF.

Figure 1 illustrates the ConvNCF framework, with the embedding size of 64 and six convolution
layers as an example. The embedding layer (left most) contains the embedding functions f U (u)
and f I (i), which outputs two vectors (of size 64) to represent user u and item i , respectively. Above
the embedding layer, ConvNCF models the pairwise correlations between embedding dimensions
by constructing the Interaction Map E ∈ R64×64, which is the outer product of user embedding
and item embedding. The interaction map is then fed to a stack of convolutional layers to learn
high-order correlations; the convolutional layers follow a tower structure with 32 feature maps in
the example, and the last convolutional layer outputs a tensor sized 1 × 1 × 32. In the prediction
layer, ConvNCF applies a linear projection on the 1 × 1 × 32 tensor to obtain the prediction ŷui .
Given the model prediction, ConvNCF is trained with the pairwise learning objective BPR (Bayesian
Personalized Ranking [50]).

4.2 Outer Product Layer
We merge user embedding f U (u) ∈ RK×1 and item embedding f I (i) ∈ RK×1 with an outer product
operation, which results in a matrix E ∈ RK×K :

E = f U (u) ⊗ f I (i) = f U (u) · f I (i)T , (5)

where the (k1,k2)-th element in E is: ek1,k2 = f U (u)k1 · f
I (i)k2 . It can be seen that all pairwise

embedding dimension correlations are encoded in the E, thus we term it as Interaction Map.
Compared to the widely used inner product operation or element-wise product, we argue that

interaction map generated via outer product is more advantageous in threefold: 1) it subsumes
the element-wise product which considers only diagonal elements in our interaction map; 2) it
encodes more signal by accounting for the correlations between different embedding dimensions;
and 3) it is more meaningful than the simple concatenation operation, which only retains the
original information in embeddings without modeling any correlation. Moreover, it has been
recently shown that, modeling the interaction of feature embeddings explicitly is particularly useful
for a deep learning model to generalize well on sparse data, whereas using concatenation is less
effective [4, 24].
Another potential benefit of the interaction map lies in its 2D matrix format — which is the

same as an image. In this respect, the pairwise correlations encoded in our interaction map can
be seen as the local features of an “image”. As we all know, deep learning methods have achieved
the most success in computer vision, and many powerful deep models especially the ones based
on CNN (e.g., ResNet [22] and DenseNet [34]) have been developed for learning from 2D image
data. Thus, building a 2D interaction map allows these powerful CNN models to be applied in the
recommendation task.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:10 Xiaoyu Du, et al.

4.3 Convolutional Layers
The interaction map E is fed into multiple convolutional layers for learning high-order correlations.
As Figure 1 illustrates, there are 6 convolutional layers with the kernel size 2 × 2 and stride 2,
meaning that each successive layer is half size of the previous layer. Each convolutional layer is
composed of 32 convolution kernels (note that pooling is not used in this work). In this structure,
higher layers extract higher-order correlations among dimensions. For example, an element in
Layer 1 indicates a 2 × 2 area in E, while an element in Layer 2 indicates a 4 × 4 area in E. The 4 × 4
area indicates the correlations among 4 dimensions. Thus the last layer (i.e., the Layer 6 in Figure 1)
contains the correlations among all the input embedding dimensions.

There are two reasons that convolutional layers would be effective over the feature map. Firstly,
as a local feature extractor, the convolutional filter does not require that all the subregions have
the same rule. In image applications, the image patches cropped from the border and the center
are much different. Similarly, in text applications, the phrases captured from the beginning, the
middle, and the end of the sentences follow different grammar rules. Secondly, the interaction map
may have a spatial relationship, where the subregion indicates the correlations between multiple
dimensions, as discussed in Section 4.3.3.

4.3.1 Advantages over MLP. Above the interaction map, the choice of neural layers has a large
impact on its performance. A straightforward solution is to use the MLP network as proposed
in NCF [28]; note that to apply MLP on the 2D interaction matrix E ∈ RK×K , we can flat E to a
vector of size K2. Despite that MLP is theoretically guaranteed to have a strong representation
ability [32], its main drawback of having a large number of parameters cannot be ignored. As
an example, assuming we set the embedding size of a ConvNCF model as 64 (i.e., K = 64) and
follow the common practice of the half-size tower structure. In this case, even a 1-layer MLP has
8, 388, 608 (i.e., 4, 096 × 2, 048) parameters, not to mention the use of more layers. We argue that
such a large number of parameters makes MLP prohibitive to be used for prediction because of
three reasons: 1) It requires powerful machines with large memories to store the model; and 2) It
needs a large number of training data to learn the model well; and 3) It needs to be carefully tuned
on the regularization of each layer to ensure good generalization performance2.
In contrast, convolution filter can be seen as the “locally connected weight matrix” for a layer,

since it is shared in generating all entries of the feature maps of the layer. This significantly reduces
the number of parameters of a convolutional layer compared to that of a fully connected layer.
Specifically, in contrast to the 1-layer MLP that has over 8 millions parameters, the above 6-layer
CNN has only about 20 thousands parameters, which are several magnitudes smaller. This not only
allows us to build deeper models than MLP easily, but also benefits the stable and generalizable
learning of high-order correlations among embedding dimensions.

4.3.2 Details of Convolution. Each convolution layer has 32 kernels, each of which produces a
feature map. A feature map c in convolutional layer l is represented as a 2D matrix Elc ; since we set
the stride to 2, the size of Elc is half of its previous layer l − 1, e.g., E1c ∈ R32×32 and E2c ∈ R16×16.
For Layer l , all feature maps together can be represented as a 3D tensor El .

2In fact, another empirical evidence is that most papers used MLP with at most 3 hidden layers, and the performance only
improves slightly (or even degrades) with more layers [13, 24, 28]

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:11

Given the input interaction map E, we can first get the feature maps of Layer 1 as follows:

E1 = [e1i, j,c]32×32×32, where

e1i, j,c = ReLU(b1 +
1∑

a=0

1∑
b=0

e2i+a,2j+b · t1a,b,c︸︷︷︸
convolutional kernel

), (6)

where b1 denotes the bias term for Layer 1, and T 1 = [t1a,b,c]2×2×32 is a 3D tensor denoting the
convolutional kernel for generating feature maps of Layer 1. We use the rectifer unit as activation
function, a common choice in CNN to build deep models. Following the similar convolution
operation, we can get the feature maps for the following layers. The only difference is that from
Layer 1 on, the input to the next layer l + 1 becomes a 3D tensor El :

El+1 = [el+1i, j,c]s×s×32, where 1 ≤ l ≤ 5, s =
64
2l+1
,

el+1i, j,c = ReLU(bl+1 +
1∑

a=0

1∑
b=0

el2i+a,2j+b · tl+1a,b,c),

(7)

where bl+1 denotes the bias term for Layer l + 1, and T l+1 = [t l+1a,b,c,d]2×2×32×32 denote the 4D
convolutional kernel for Layer l + 1. The output of the last layer is a tensor of dimension 1 × 1 × 32,
which can be seen as a vector and is projected to the final prediction score with a weight vector w.

4.3.3 Dimension Correlation in ConvNCF. Here we provide detailed explanations on how ConvNCF
models the dimension correlations between embedding factors. Equation 5 demonstrates that the
entry exy in the interaction map E is a product of f U (u)x and f I (i)y , which is viewed as a 1-to-1
correlation, also namely 1-order correlation or basic correlation. Let [xs : xe] be a row range and
[ys : ye] be a column range, the entries in the adjacent subregion Exs :xe,ys :ye indicate all the basic
correlations between f U (u)xs :xe and f I (i)ys :ye . Overall, the interaction map E itself contains all the
basic correlations between f U (u) and f I (i). Note that, the first layer of ConvNCF is the interaction
map E, which means what ConvNCF actually does is to predict a score by modeling all the basic
correlations.

Then we elaborate on how ConvNCF models the correlations. Equation 6 demonstrates that the
feature e1xy is the composite correlation of four entries in the interaction map E, [e2x,2y ; e2x,2y+1;
e2x+1,2y ; e2x+1,2y+1]. Thus the entry e1xy in the the feature map E1 is actually the feature of the
composite correlations of E2x :2x+1,2y :2y+1, which is a 2-to-2 correlation namely 2-order correlation.
Therefore, the feature map E1 is composed of 2-order correlations. Similarly, above the feature map
E1, Equation 7 demonstrates that the entry e2xy in E2 is the composite correlations of E1

2x :2x+1,2y :2y+1,
which is the 4-to-4 composite correlations of E4x :4x+3,4y :4y+3 namely 4-order correlation. Thus, the
feature map E2 is composed of 4-order correlations. It is worth mentioning that the convolutional
kernels are sized 2 × 2 with stride 2 and no padding. The entries in higher feature map can just
cover all the entries in lower feature map. This ensures the integrity in transferring the embedding
information. As such, an entry in the last hidden layer encodes the correlations among all dimensions.
Through this way of stacking multiple convolutional layers, we allow ConvNCF to learn high-order
correlations among embedding dimensions from locally to globally, based on the 2D interaction
map.

4.4 Model Prediction and Training
Given the output vector of the last convolutional layer as g ∈ RK×1, the model prediction is defined
as: ŷui = wT g, where w is the trainable weight vector in the prediction layer. To summarize, the

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:12 Xiaoyu Du, et al.

parameters in ConvNCF are grouped into four parts, ΘU in user embedding function f U (·), ΘI in
item embedding generation f I (·), ΘCNN in the convolutional layers, and w for the prediction layer.

Considering that recommendation is a personalized ranking task, we train the parameters with
a ranking-aware objective function. Here we adopt the Bayesian Personalized Ranking (BPR)
objective function [50]:

L =
∑

(u,i, j)∈D

− lnσ (ŷui − ŷuj)

+ λ1 | |ΘU | |2 + λ2 | |ΘI | |
2 + λ3 | |ΘCNN | |2 + λ4 | |w| |2,

(8)

where λ∗ are hyper-parameters for regularization, and D denotes the set of training instances:
D := {(u, i, j)|i ∈ R+u ∧ j < R+u }, where R+u denotes the set of items that has been consumed by
user u.

In each training epoch, we first shuffle all observed interactions, and then get a mini-batch in a
sequential way. Given the mini-batch of observed interactions, we generate negative examples on
the fly to get the training triplets. The negative examples are randomly sampled from a uniform
distribution; while recent efforts show that a better negative sampler can further improve the
performance [16, 61], we leave this exploration as future work.

5 THREE CONVNCF METHODS
To demonstrate how ConvNCF works, we propose three instantiations of ConvNCF by equip-
ping them with different embedding functions. We name the three methods as ConvNCF-MF,
ConvNCF-FISM and ConvNCF-SVD++, which adopt the embedding function used in matrix
factorization (MF) [50], factored item similarity model (FISM) [35], and SVD++ [37], respectively.
Figure 2 illustrates the three embedding mechanisms, which differ in the user embedding function
part (the item embedding functions are the same, which project item ID to embedding vector).
Then the embedding vectors are fed into the merge function F (i.e., the outer product) to generate
the interaction map E, which is fed into the ConvNCF subsequently. Next, we present the three
methods in turn; and lastly, we discuss the important tricks of embedding pre-training and adaptive
regularization, which are crucial for the effectiveness of ConvNCF methods.

5.1 ConvNCF-MF
MF adopts the simplest ID embedding function, i.e., directly projecting the ID of a user (an item) to
latent vector representation:

f U (u) = pu , f I (i) = qi . (9)
Let the user embedding matrix be P ∈ RM×K and the item embedding matrix be Q ∈ RN×K . This
function is equal to taking out the u-th row of P as u’s embedding vector (i.e., pu) and the i-th row
of Q as i’s embedding vector (i.e., qi).

In MF, each user is associated with an individualized set of parameters to denote the user’s interest
— even two users have exactly the same interactions on items, they are parameterized differently in
the model. As such, it is also called as user-based CF in recommendation literature. The problem
of this setting is that, if a user has never been seen in the training set (i.e., cold-start), the model
cannot obtain her embedding in the online phase, even though the user has some new interactions
on items. In other words, the model lacks the ability to provide real-time personalization. Next, we
introduce the setting of item-based CF, we can address this deficiency.

5.2 ConvNCF-FISM
Instead of directly projecting user ID to embedding vector, FISM represents a user with her histori-
cally interacted items, based on which the embedding function is defined:

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:13

𝒑𝒑𝑢𝑢 𝒒𝒒𝑖𝑖

𝒒𝒒0′

𝒒𝒒𝑖𝑖

𝒒𝒒𝑡𝑡′

…

𝒒𝒒0′

𝒒𝒒𝑖𝑖

𝒒𝒒𝑡𝑡′

…
𝒑𝒑𝑢𝑢

(a) ConvNCF-MF (b) ConvNCF-FISM (c) ConvNCF-SVD++

ConvNCF ConvNCF ConvNCF

Interaction Map 𝑬𝑬 Interaction Map 𝑬𝑬 Interaction Map 𝑬𝑬

Fig. 2. Illustration of the embedding function of the three ConvNCF methods.

f U (u) =
1

|Ru |α

∑
t ∈Ru \{i }

q′
t , f I (i) = qi , (10)

where Ru denotes the set of items interacted by u, q′
t denotes the embedding of historical item t

in constructing the user embedding function. Note that FISM has three considerations to ensure
the embedding quality: 1) the historical item embedding q′

t used in user embedding function is
different from target item embedding qt used in item embedding function, which can improve the
model representation ability; 2) the target item i is excluded to represent the user, i.e., the Ru\{i}
term, so as to avoid information leakage in training; 3) the coefficient 1

|Ru |α
is to normalize users of

different activity levels (by convention we set α as 0.5).
In FISM, a user’s embedding is aggregated from the embeddings of the user’s historically inter-

acted items. Thus, for two users with the same interactions on items, their embeddings are the
same. For a cold-start user, as long as she has new interactions, we can obtain her embedding
instantaneously by calling the embedding function without re-training the model. Therefore, such
item-based CF scheme is suitable to provide real-time personalization to refresh the recommendation
for users that have new interactions.

5.3 ConvNCF-SVD++
SVD++ is a hybrid method that combines the user embedding design of MF and FISM. It uses both
the ID and historically interacted items to represent a user, and defines the embedding function as:

f U (u) = pu +
1

|Ru |α

∑
t ∈Ru \{i }

q′
t , f I (i) = qi , (11)

where the notations follow the ones used in Equation (9) and (10). The user embedding function of
SVD++ is the sum of the user embedding functions of MF and FISM, unifing the strengths of both
methods. Specifically, pu is a static vector to encode user inherent preference, and

∑
t ∈Ru \{i } q

′
t

can be dynamically adjusted by including recently interacted items. Note that SVD++ is a very

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:14 Xiaoyu Du, et al.

Table 3. Top-k recommendation performance where k ∈ {5, 10, 20}. RI indicates the average improvement
of ConvNCF-SVD++ over the baseline. ∗ indicates that the improvements over all baselines are statistically
significant for p < 0.05.

Dataset Model Type Model HR@k NDCG@k RI
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Gowalla

Popularity ItemPop 0.2003 0.2785 0.3739 0.1099 0.1350 0.1591 +263.2%

Linear Models
MF-BPR 0.6284 0.7480 0.8422 0.4825 0.5214 0.5454 +9.5%
FISM 0.6170 0.7381 0.8347 0.4742 0.5135 0.5381 +11.1%
SVD++ 0.6545 0.7634 0.8475 0.5111 0.5465 0.5679 +5.6%

Neural Network
Models

MLP 0.6359 0.7590 0.8535 0.4802 0.5202 0.5443 +9.0%
JRL 0.6685 0.7747 0.8561 0.5270 0.5615 0.5821 +3.4%
NeuMF 0.6744 0.7793 0.8602 0.5319 0.5660 0.5865 +2.6%

Our Models
ConvNCF-MF 0.6914 0.7936∗ 0.8695∗ 0.5494 0.5826 0.6019 -
ConvNCF-FISM 0.6716 0.7767 0.8572 0.5312 0.5654 0.5859 -
ConvNCF-SVD++ 0.6949∗ 0.7930 0.8657 0.5532∗ 0.5851∗ 0.6036∗ -

Yelp

Popularity ItemPop 0.0710 0.1147 0.1732 0.0365 0.0505 0.0652 +197.0%

Linear Models
MF-BPR 0.1752 0.2817 0.4203 0.1104 0.1447 0.1796 +11.2%
FISM 0.1852 0.2884 0.4262 0.1174 0.1505 0.1852 +7.1%
SVD++ 0.1893 0.2998 0.4360 0.1208 0.1562 0.1905 +4.0%

Neural Network
Models

MLP 0.1766 0.2831 0.4203 0.1103 0.1446 0.1792 +11.1%
JRL 0.1858 0.2922 0.4343 0.1177 0.1519 0.1877 +6.0%
NeuMF 0.1881 0.2958 0.4385 0.1189 0.1536 0.1895 +4.9%

Our Models
ConvNCF-MF 0.1978 0.3086 0.4430 0.1243 0.1600 0.1939 -
ConvNCF-FISM 0.1925 0.3028 0.4423 0.1243 0.1598 0.1949 -
ConvNCF-SVD++ 0.1991∗ 0.3092∗ 0.4457∗ 0.1275∗ 0.1629∗ 0.1973∗ -

competitive CF model that is known as the best single model in the Netflix Challenge [3]. By
plugging its embedding functions into ConvNCF, we can further advance its performance.

5.4 Embedding Pre-training and Adaptive Regularization
Due to the multi-layer design of ConvNCF, the initialization of model parameters has a large impact
on model training and its testing performance. As the convolutional layers are learned on the
outer product of embeddings to generate the features used for prediction, a good initialization on
embeddings is beneficial to the overall model learning. Thus, we propose to pre-train the embedding
layer. For the three ConvNCF methods, we first train its shallow model counterpart, i.e., MF, FISM,
and SVD++ for ConvNCF-MF, ConvNCF-FISM, and ConvNCF-SVD++, respectively. We then use the
learned embeddings to initialize the embedding layer of the corresponding method. Our empirical
studies find that this strategy can substantially improve the model performance.
After pre-training the embedding layer, we start training the ConvNCF model. As other model

parameters are randomly initialized, the overall model is in an underfitting state. Thus, we disable
regularization for the 1st epoch to make the model learn to fit the data as quickly as possible. For
the following epochs, we enforce regularization on ConvNCF to prevent overfitting, including the
L2 regularization on the embedding layer (controlled by λ1 and λ2), convolution layers (controlled
by λ3), and the output layer (controlled by λ4). It is worth noting that the regularization coefficients
(especially λ4 on the output layer) have a very large impact and should be carefully tuned for an
optimal performance.

6 EXPERIMENTS
To evaluate our proposal, we conduct experiments to answer the following research questions:
RQ1 How do our ConvNCF perform compared with state-of-the-art recommendation methods?

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:15

RQ2 How do the embedding dimension correlations (captured by the outer product layer and
convolution layers) contribute to the model performance?

RQ3 How do the key hyper-parameters (e.g., feature maps and pre-training) affect ConvNCF’s
performance?

6.1 Experimental Settings
Data Description. We conduct experiments on two publicly accessible datasets: Yelp3 andGowalla4.
Yelp. This is the Yelp Challenge data for user ratings on businesses. We filter the dataset same

as [30]. Moreover, we merge the repetitive ratings at different timestamps to the earliest one, so as
to study the performance of recommending novel items to a user. The final dataset obtains 25,815
users, 25,677 items, and 730,791 ratings.

Gowalla. This is the check-in dataset from Gowalla, a location-based social network, constructed
by [40] for item recommendation. To ensure the quality of the dataset, we perform a modest filtering
on the data, retaining users with at least two interactions and items with at least ten interactions.
The final dataset contains 54,156 users, 52,400 items, and 1,249,703 interactions.

Evaluation Protocols. For each user in the dataset, we holdout the latest one interaction as the
testing positive sample, and then pair it with 999 items that the user did not rate before as the
negative samples. Each method then generates predictions for these 1, 000 user-item pairs. To
evaluate the results, we adopt two metrics Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG), same as [28]. HR@k is a recall-based metric, measuring whether the testing item
is in the top-k position (1 for yes and 0 otherwise). NDCG@k assigns higher scores to the items
within the top k positions of the ranking list. To eliminate the effect of random oscillation, we
report the average scores of the last ten epochs upon convergence.

Baselines. To justify the effectiveness of our method, we compare with the following methods:
ItemPop ranks the items based on their popularity, which is calculated by the number of interac-
tions. It is always taken as a benchmark for recommender algorithms.
MF-BPR [50] optimizes the matrix factorization model with the pairwise BPR ranking loss. It is a
competitive user-based CF method.
FISM [35] replaces the user ID embedding with the item-based embedding function of Equation 10.
It is a competitive item-based CF method.
SVD++ [37] combines the user embedding design of MF and FISM, as formulated in 11. It is a
strong CF model that scores the best single model in the Netflix challenge.
MLP [28] is a NCF method that feeds the concatenation of user embedding and item embedding
into the standard MLP for learning the interaction function. As no interaction between user
embedding and item embedding is explicitly modeled, this model can be inferior to the MF
model [28].
JRL [64] is a NCFmethod that places aMLP above the element-wise product of user embedding and
item embedding. It enhances GMF [28] by placing multiple hidden layers above the element-wise
product, while GMF directly outputs the prediction score from the element-wise product.
NeuMF [28] is a state-of-the-art method for item recommendation, which ensembles GMF and
MLP to learn the user-item interaction function.
The architecture of ConvNCF is shown in Figure 1. Above the outer product layer, there are

six convolutional layers. Each of them has 32 convolutional kernels with stride 2 and no padding.

3https://github.com/hexiangnan/sigir16-eals
4http://dawenl.github.io/data/gowalla_pro.zip

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:16 Xiaoyu Du, et al.

We implement the three ConvNCF methods as introduced in Section 5, which have the same
architecture setting with difference only in the user embedding function.

Parameter Settings. Our methods are implemented in Tensorflow5. We randomly holdout 1 train-
ing interaction for each user as the validation set to tune hyper-parameters. For a fair comparison,
all models apply the same setting in terms of the model size and optimization: the embedding size
is set to 64 and all models are optimized with the BPR loss using mini-batch Adagrad. For MLP,
JRL, and NeuMF that have multiple fully connected layers, we tuned the number of layers from 1
to 3 following the tower structure of [28]. For all models besides MF, we pre-train their embedding
layers using MF embeddings, and the L2 regularization for each method has been fairly tuned.
Due to the strong representation ability of ConvNCF, it is prone to overfitting. As such, tuning

the regularization has a large impact on its performance. We divide the parameters of ConvNCF
into two groups: embedding parameters (ΘU and ΘI) and CNN parameters (ΘCNN and w), and
tune the regularization coefficient and learning rate separately for the two groups. For the em-
bedding parameters, the optimal learning rate (under Adagrad) is around 0.001 and 0.005, and the
regularization coefficients (i.e., λ1, λ2) are searched in [0, 10−7, 10−6]. For the CNN parameters, the
optimal learning rate is around 0.01 and 0.05, and the regularization coefficients (i.e., λ3, λ4) are
searched in [10−2, 10−1, 1, 10].

6.2 Performance Comparison (RQ1)
Table 3 shows the Top-k recommendation performance on both datasets where k is set to 5, 10, and
20. We have the following key observations:

• Our ConvNCF methods achieve the best performance in general, and obtain high improvements
over the compared methods. Particularly, each ConvNCF instantiation outperforms its linear
counterpart in all settings (e.g., ConvNCF-MF vs. MF, ConvNCF-FISM vs. FISM). This justifies
the utility of our ConvNCF design — using outer product (and CNN) to capture second-order
(and high-order) correlations among embedding dimensions.

• Among the three ConvNCF methods, ConvNCF-SVD++ is the strongest and achieves the best
performance in most settings. This demonstrates the utility of designing better embedding
function for ConvNCF. Moreover, we find that ConvNCF-FISM achieves weak performance
on Gowalla. We hypothesize the reason is that the item-based user representation mechanism
does not work well for the Gowalla dataset, since FISM also underperforms MF substantially
on Gowalla. Another obsrevation is that initialized with the pretrained embeddings, ConvNCF
would significantly improve the performances in few epochs (Figure 3). In such few epochs, the
embeddings would not change much, that implies that modeling the embedding correlations
plays a significant role for the state-of-the-art performances.

• JRL consistently outperforms MLP by a large margin on both datasets. This indicates that,
explicitly modeling the correlations of embedding dimensions is rather helpful for the followup
learning of the hidden layers, even modeling the simple correlations that assume the dimensions
are independent. Meanwhile, it also reveals the practical difficulties to train MLP well, although
it has strong representation ability in principle [32].

• The relatively weak performances of MF and FISM reflect that simple inner product of the user
and item embeddings is far insufficient to depict the complex patterns within the user-item
interactions. Moreover, MF outperforms FISM on Gowalla but underperforms FISM on Yelp. This
implies that which embedding function works better is dependent on the properties of the dataset.

5Available at: https://github.com/duxy-me/ConvNCF.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

https://github.com/duxy-me/ConvNCF

Convolutional NCF 111:17

0.20

0.22

0.24

0.26

0.28

0.30

0.32

 0 500 1000 1500 2000 2500 3000

H
R

@
1
0

Epoch#

Encoding-MF (HR)

MF-BPR
ConvNCF-MF

0.20

0.22

0.24

0.26

0.28

0.30

0.32

 0 50 100 150 200 250 300
H

R
@

1
0

Epoch#

Encoding-FISM (HR)

FISM
ConvNCF-FISM

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

 0 50 100 150 200 250 300

H
R

@
1
0

Epoch#

Encoding-SVD++ (HR)

SVD++
ConvNCF-SVD++

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

 0 500 1000 1500 2000 2500 3000

N
D

C
G

@
1
0

Epoch#

Encoding-MF (NDCG)

MF-BPR
ConvNCF-MF

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

 0 50 100 150 200 250 300

N
D

C
G

@
1
0

Epoch#

Encoding-FISM (NDCG)

FISM
ConvNCF-FISM

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

 0 50 100 150 200 250 300

N
D

C
G

@
1
0

Epoch#

Encoding-SVD++ (NDCG)

SVD++
ConvNCF-SVD++

Fig. 3. HR@10 and NDCG@10 of ConvNCF models and corresponding embedding models (i.e.,MF-BPR [50],
SVD++ [37] and FISM [35]) on Yelp. The results verify that ConvNCF could effectively discover the inherent
correlations between embedding dimensions.

Lastly, ItemPop achieves the worst performance, verifying the importance of considering users’
personalized preferences in the recommendation.

6.3 Modeling Embedding Dimension Correlations (RQ2)
Through overall performance comparison, we have shown the strength of ConvNCF. Next, we
conduct more experiments to verify the utility of modeling embedding dimension correlations,
more concretely, the efficacy of outer product and CNN in ConvNCF. We choose ConvNCF-MF as
an example to demonstrate the usefulness of outer product (for brevity, we term it as ConvNCF in
this subsection only).

6.3.1 Efficacy of Outer Product. Besides outer product, another two choices that are commonly
used in previous work are concatenation and element-wise product. It is worth mentioning that
element-wise product, concatenation, and outer product operations have essentially different
structures, since the outer product operation is performed based on a matrix while the other
two operations are performed based on vectors. To conduct a fair evaluation, we implement the
state-of-the-art models representing element-wise product and the concatenation style learning
methods according to [28, 64]. As such, we compare the training progress of ConvNCF with
GMF and JRL (which use element-wise product), and MLP (which uses concatenation). As can
be seen from Figure 4, ConvNCF outperforms other methods by a large margin on both datasets,
verifying the positive effect of using outer product above the embedding layer. Specifically, the
improvements over GMF and JRL demonstrate that explicitly modeling the correlations between
different embedding dimensions are useful. Lastly, the rather weak and unstable performance of
MLP imply the difficulties to train MLP well, especially when the low-level has fewer semantics
about the feature interactions. This is consistent with the recent finding of [24] in using MLP for
sparse data prediction.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:18 Xiaoyu Du, et al.

0.240

0.250

0.260

0.270

0.280

0.290

0.300

0.310

 0 200
 400

 600
 800

 1000
 1200

 1400

H
R

@
1
0

Epoch#

Yelp-HR

ConvNCF-MF
GMF
MLP
JRL

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

 0 200
 400

 600
 800

 1000
 1200

 1400

N
D

C
G

@
1
0

Epoch#

Yelp-NDCG

ConvNCF-MF
GMF
MLP
JRL

0.71

0.73

0.75

0.77

0.79

 0 200
 400

 600
 800

 1000
 1200

 1400

H
R

@
1
0

Epoch#

Gowalla-HR

ConvNCF-MF
GMF
MLP
JRL

0.45

0.48

0.51

0.54

0.57

 0 200
 400

 600
 800

 1000
 1200

 1400

N
D

C
G

@
1
0

Epoch#

Gowalla-NDCG

ConvNCF-MF
GMF
MLP
JRL

Fig. 4. HR@10 and NDCG@10 of applying different operations above the embedding layer in each epoch
(GMF and JRL use element-wise product, MLP uses concatenation, and ConvNCF uses outer product).

6.3.2 Efficacy of CNN. In order to verify the effectiveness of CNN over MLP, we make a fair
comparison by training them based on the same 2D interaction map. Specifically, we first flatten
the interaction map as a K2 dimensional vector, and then place a 3-layer MLP above it. We term this
method as ONCF-mlp. Figure 5 compares its performance with ConvNCF in each epoch. We can see
that ONCF-mlp performs much worse than ConvNCF, in spite of the fact that it uses much more
parameters (1000 times more) than ConvNCF. Another drawback of using such many parameters
in ONCF-mlp is that it makes the model rather unstable, which is evidenced by its large variance
in epoch. In contrast, our ConvNCF achieves much better and stable performance by using the
locally connected CNN. These empirical evidence provide support for our motivation of designing
ConvNCF and our discussion of MLP’s drawbacks in Section 4.3.1.

6.4 Hyperparameter Study (RQ3)
6.4.1 Impact of Feature Map Number. The number of feature maps in each CNN layer affects the
representation ability of our ConvNCF. Figure 6 shows the performance of ConvNCF-MF with
respect to different numbers of feature maps. We can see that all the curves increase steadily and
finally achieve similar performance, though there are some slight differences on the convergence
curve. This reflects the strong expressiveness and generalization of using CNN above the interaction
map since dramatically increasing the number of parameters of a neural network does not lead to
overfitting. Consequently, our model is very suitable for practical use.

6.4.2 Pretraining on Embeddings. In our experiments, all the embeddings used in ConvNCF are
initialized by the pretrained parameters. We here compare the effect of training with pretraining

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:19

0.26

0.27

0.28

0.29

0.30

0.31

0.32

 0 200
 400

 600
 800

 1000
 1200

 1400

H
R

@
1
0

Epoch#

Yelp-HR

ConvNCF-MF
ONCF-mlp

0.14

0.14

0.14

0.15

0.15

0.16

0.16

 0 200
 400

 600
 800

 1000
 1200

 1400

N
D

C
G

@
1
0

Epoch#

Yelp-NDCG

ConvNCF-MF
ONCF-mlp

0.70

0.72

0.74

0.76

0.78

0.80

 0 200
 400

 600
 800

 1000
 1200

 1400

H
R

@
1
0

Epoch#

Gowalla-HR

ConvNCF-MF
ONCF-mlp

0.48

0.50

0.52

0.54

0.56

0.58

 0 200
 400

 600
 800

 1000
 1200

 1400

N
D

C
G

@
1
0

Epoch#

Gowalla-NDCG

ConvNCF-MF
ONCF-mlp

Fig. 5. HR@10 and NDCG@10 of using different hidden layers above the interaction map (ConvNCF uses a
6-layer CNN and ONCF-mlp uses a 3-layer MLP).

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

 100 300 500 700 900 1100 1300

H
R

@
1
0

Epoch#

Yelp

C=8
C=16
C=32
C=64

C=128
0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

 100 300 500 700 900 1100 1300

N
D

C
G

@
1
0

Epoch#

Yelp

C=8
C=16
C=32
C=64

C=128

Fig. 6. Performance of ConvNCF-MF w.r.t. different numbers of feature maps per convolutional layer (denoted
by C) in each epoch on Yelp.

and training from scratch. As shown in Figure 7, there are two curves. The orange one indicates
the performance training with pretraining, and the purple one indicates the performance training
from scratch. The orange curve at the left side of the dashed line presents the status pretraining the
models and the rest presents the status training ConvNCF. Due to the simplicity of original models,
the pretraining processs increase the performances soon. Based on these embeddings, ConvNCF
obtains the state-of-the-art performance, which re-emphasizes the importance of modeling the

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:20 Xiaoyu Du, et al.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0 500 1000 1500 2000 2500 3000

H
R

@
1
0

Epoch#

ConvNCF-MF (HR)

Training with Pretraining
Training from Scratch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0 50 100 150 200 250 300
H

R
@

1
0

Epoch#

ConvNCF-FISM (HR)

Training with Pretraining
Training from Scratch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0 50 100 150 200 250 300

H
R

@
1
0

Epoch#

ConvNCF-SVD++ (HR)

Training with Pretraining
Training from Scratch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 0 500 1000 1500 2000 2500 3000

N
D

C
G

@
1
0

Epoch#

ConvNCF-MF (NDCG)

Training with Pretraining
Training from Scratch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 0 50 100 150 200 250 300

N
D

C
G

@
1
0

Epoch#

ConvNCF-FISM (NDCG)

Training with Pretraining
Training from Scratch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 0 50 100 150 200 250 300

N
D

C
G

@
1
0

Epoch#

ConvNCF-SVD++ (NDCG)

Training with Pretraining
Training from Scratch

Fig. 7. HR@10 and NDCG@10 on Yelp via different training tricks: training from scratch and training with
pretraining. The results demonstrate that pretraining the embeddings with original models is helpful to
efficiently obtain the well-performed ConvNCF.

dimension correlations. In contrast, training from scratch also grasps some information but due to
more complex structure, it requires more efforts to achieve the nice performance.

7 CONCLUSION
In this paper, we presented a new neural network framework ConvNCF for collaborative filtering
by modeling the embedding dimension correlations. Moreover, we proposed three variants of
ConvNCF. ConvNCF is able to capture latent relations between embedding dimensions via the
outer product operation. To learn more accurate preference, we used multiple convolution layers
on top of the interaction map. Extensive experiments on two real-world datasets demonstrated
that modeling the embedding dimension correlations was helpful for CF tasks. We further showed
that ConvNCF outperforms state-of-the-art methods in the top-k item recommendation task.

In future, we will explore more advanced CNN techniques such as attentive mechanism [41] and
residual learning [22] to learn higher-level representations. Moreover, we will extend ConvNCF to
content-based recommendation scenarios [23, 60] since the item features have richer semantics
than just an ID. Particularly, we are interested in building recommender systems for multimedia
items like images and videos, and textual items like news.

ACKNOWLEDGMENTS
This work was partially supported by the National Key Research and Development Program of
China under Grant 2016YFB1001001, the National Natural Science Foundation of China (Grant No.
61772275, 61732007, 61720106004 and U1611461), the Natural Science Foundation of Jiangsu Province
(BK20170033), and the National Science Foundation of China - Guangdong Joint Foundation (Grant
No. U1401257). This research is also part of NExT++, supported by the National Research Foundation,
Prime Ministers Office, Singapore under its IRC@Singapore Funding Initiative.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:21

REFERENCES
[1] Ting Bai, Ji-RongWen, Jun Zhang, andWayne Xin Zhao. 2017. A Neural Collaborative Filtering Model with Interaction-

based Neighborhood. In CIKM. 1979–1982.
[2] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A Generic Coordinate Descent Framework

for Learning from Implicit Feedback. InWWW. 1341–1350.
[3] James Bennett, Stan Lanning, et al. 2007. The netflix prize. In Proceedings of KDD cup and workshop, Vol. 2007. New

York, NY, USA, 35.
[4] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H. Chi. 2018. Latent Cross: Making Use of

Context in Recurrent Recommender Systems. InWSDM. 46–54.
[5] Da Cao, Xiangnan He, Liqiang Nie, Xiaochi Wei, Xia Hu, Shunxiang Wu, and Tat-Seng Chua. 2017. Cross-Platform

App Recommendation by Jointly Modeling Ratings and Texts. ACM Transactions on Information Systems 35, 4 (July
2017), 37:1–37:27.

[6] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng Chua. 2017. Embedding factorization
models for jointly recommending items and user generated lists. In SIGIR. ACM, 585–594.

[7] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive Collaborative
Filtering: Multimedia Recommendation with Item- and Component-Level Attention. In SIGIR. 335–344.

[8] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. 2012. SVDFeature: a toolkit for
feature-based collaborative filtering. Journal of Machine Learning Research 13, Dec (2012), 3619–3622.

[9] Xu Chen, Yongfeng Zhang, Hongteng Xu, Zheng Qin, and Hongyuan Zha. 2018. Adversarial Distillation for Efficient
Recommendation with External Knowledge. ACM Transactions on Information Systems (TOIS) 37, 1 (2018), 12.

[10] Zhiyong Cheng, Xiaojun Chang, Lei Zhu, Rose C Kanjirathinkal, and Mohan Kankanhalli. 2019. MMALFM: Explainable
recommendation by leveraging reviews and images. ACM Transactions on Information Systems (TOIS) 37, 2 (2019), 16.

[11] Zhiyong Cheng, Ying Ding, Xiangnan He, Lei Zhu, Xuemeng Song, and Mohan S Kankanhalli. 2018. Aˆ 3NCF: An
Adaptive Aspect Attention Model for Rating Prediction.. In IJCAI. 3748–3754.

[12] Zhiyong Cheng, Jialie Shen, Lei Zhu, Mohan S Kankanhalli, and Liqiang Nie. 2017. Exploiting Music Play Sequence for
Music Recommendation.. In IJCAI. 3654–3660.

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube Recommendations. In RecSys.
191–198.

[14] George Cybenko. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems 2, 4 (1989), 303–314.

[15] Shuiguang Deng, Longtao Huang, Guandong Xu, Xindong Wu, and Zhaohui Wu. 2017. On deep learning for trust-
aware recommendations in social networks. IEEE transactions on neural networks and learning systems 28, 5 (2017),
1164–1177.

[16] Jingtao Ding, Fuli Feng, Xiangnan He, Guanghui Yu, Yong Li, and Depeng Jin. 2018. An Improved Sampler for Bayesian
Personalized Ranking by Leveraging View Data. In WWW. 13–14.

[17] Xiangnan He Xiang Wang Cheng Luo Yiqun Liu Feng, Fuli and Tat-Seng Chua. 2019. Temporal Relational Ranking for
Stock Prediction. ACM Transactions on Information Systems (TOIS) 37, 2 (2019), 27.

[18] Matt W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer perceptron)-a review of applications
in the atmospheric sciences. Atmospheric environment 32, 14-15 (1998), 2627–2636.

[19] Carlos A Gomez-Uribe and Neil Hunt. 2016. The netflix recommender system: Algorithms, business value, and
innovation. ACM Transactions on Management Information Systems (TMIS) 6, 4 (2016), 13.

[20] Xinyu Guan, Zhiyong Cheng, Xiangnan He, Yongfeng Zhang, Zhibo Zhu, Qinke Peng, and Tat-Seng Chua. 2019.
Attentive Aspect Modeling for Review-aware Recommendation. ACM Transactions on Information Systems (TOIS) 37, 3
(2019), 28.

[21] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yinglong Wang, Jun Ma, and Mohan Kankanhalli. 2019. Attentive Long
Short-Term Preference Modeling for Personalized Product Search. ACM Transactions on Information Systems (TOIS) 37,
2 (2019), 19.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR.
770–778.

[23] Ruining He and Julian McAuley. 2016. VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback.. In AAAI.
144–150.

[24] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In SIGIR. 355–364.
[25] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. 2018. Outer Product-based Neural

Collaborative Filtering. In IJCAI.
[26] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial Personalized Ranking for Item Recom-

mendation. In SIGIR.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

111:22 Xiaoyu Du, et al.

[27] Xiangnan He, Zhenkui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018. NAIS: Neural
Attentive Item Similarity Model for Recommendation. IEEE Transactions on Knowledge and Data Engineering (2018).

[28] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering.
In WWW. 173–182.

[29] Xiangnan He, Jinhui Tang, Xiaoyu Du, Richang Hong, Tongwei Ren, and Tat-Seng Chua. 2019. Fast Matrix Factorization
with Non-Uniform Weights on Missing Data. IEEE transactions on neural networks and learning systems (2019).

[30] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recom-
mendation with implicit feedback. In SIGIR. 549–558.

[31] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[32] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward networks. Neural networks 4, 2 (1991),

251–257.
[33] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and Deborah Estrin. 2017. Collaborative

metric learning. In WWW. 193–201.
[34] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. 2017. Densely connected convolutional

networks. In CVPR. 4700–4708.
[35] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item similarity models for top-n recommender

systems. In SIGKDD. ACM, 659–667.
[36] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. 2016. Convolutional matrix factorization

for document context-aware recommendation. In RecSys. ACM, 233–240.
[37] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In SIGKDD.

ACM, 426–434.
[38] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 8 (2009).
[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In NIPS. 1097–1105.
[40] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Modeling user exposure in recommendation.

In WWW. 951–961.
[41] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. 2017.

A structured self-attentive sentence embedding. In ICLR.
[42] Zhongqi Lu, Zhicheng Dou, Jianxun Lian, Xing Xie, and Qiang Yang. 2015. Content-Based Collaborative Filtering for

News Topic Recommendation.. In AAAI. 217–223.
[43] Xin Luo, MengChu Zhou, Shuai Li, Zhuhong You, Yunni Xia, and Qingsheng Zhu. 2016. A nonnegative latent factor

model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE transactions on
neural networks and learning systems 27, 3 (2016), 579–592.

[44] Zhanyu Ma, Yuping Lai, W Bastiaan Kleijn, Yi-Zhe Song, Liang Wang, and Jun Guo. 2018. Variational Bayesian
learning for Dirichlet process mixture of inverted Dirichlet distributions in non-Gaussian image feature modeling.
IEEE transactions on neural networks and learning systems 99 (2018), 1–15.

[45] Zhanyu Ma, Jing-Hao Xue, Arne Leijon, Zheng-Hua Tan, Zhen Yang, and Jun Guo. 2018. Decorrelation of neutral
vector variables: Theory and applications. IEEE transactions on neural networks and learning systems 29, 1 (2018),
129–143.

[46] Weike Pan, Qiang Yang, Wanling Cai, Yaofeng Chen, Qing Zhang, Xiaogang Peng, and Zhong Ming. 2019. Transfer to
rank for heterogeneous one-class collaborative filtering. ACM Transactions on Information Systems (TOIS) 37, 1 (2019),
10.

[47] Tieyun Qian, Bei Liu, Quoc Viet Hung Nguyen, and Hongzhi Yin. 2019. Spatiotemporal representation learning for
translation-based poi recommendation. ACM Transactions on Information Systems (TOIS) 37, 2 (2019), 18.

[48] Bohui Fang Weinan Zhang Ruiming Tang Minzhe Niu Huifeng Guo Yong Yu Qu, Yanru and Xiuqiang He. 2018.
Product-Based Neural Networks for User Response Prediction over Multi-Field Categorical Data. ACM Transactions on
Information Systems (TOIS) 37, 1 (2018), 5.

[49] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[50] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In UAI. 452–461.
[51] Amit Sharma, Jake M Hofman, and Duncan J Watts. 2015. Estimating the causal impact of recommendation systems

from observational data. In Proceedings of the Sixteenth ACM Conference on Economics and Computation. ACM, 453–470.
[52] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent Relational Metric Learning via Memory-based Attention for

Collaborative Ranking. In WWW. 729–739.
[53] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep Knowledge-Aware Network for News

Recommendation. In WWW. 1835–1844.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

Convolutional NCF 111:23

[54] Suhang Wang, Jiliang Tang, Yilin Wang, and Huan Liu. 2015. Exploring Implicit Hierarchical Structures for Recom-
mender Systems. In IJCAI. 1813–1819.

[55] Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2017. Item silk road: Recommending items from
information domains to social users. In SIGIR. 185–194.

[56] Libing Wu, Cong Quan, Chenliang Li, Qian Wang, Bolong Zheng, and Xiangyang Luo. 2019. A context-aware user-item
representation learning for item recommendation. ACM Transactions on Information Systems (TOIS) 37, 2 (2019), 22.

[57] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for top-n
recommender systems. InWSDM. ACM, 153–162.

[58] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017. Deep Matrix Factorization Models
for Recommender Systems. In IJCAI. 3203–3209.

[59] Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122 (2015).

[60] Wenhui Yu, Huidi Zhang, Xiangnan He, Xu Chen, Li Xiong, and Zheng Qin. 2018. Aesthetic-based Clothing Recom-
mendation. In WWW. 649–658.

[61] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan Zhang. 2016. Lambdafm: learning optimal
ranking with factorization machines using lambda surrogates. In CIKM. ACM, 227–236.

[62] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. 2019. A Simple Convolutional
Generative Network for Next Item Recommendation. In WSDM.

[63] Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Chua Tat-Seng, and Joemon M Jose. 2018. fbgd:
Learning embeddings from positive unlabeled data with bgd. (2018).

[64] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint representation learning for top-n recommen-
dation with heterogeneous information sources. In CIKM. 1449–1458.

[65] Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma, and Shi Feng. 2013. Localized matrix factorization for
recommendation based on matrix block diagonal forms. In Proceedings of the 22nd international conference on World
Wide Web. ACM, 1511–1520.

[66] Wayne Xin Zhao, Wenhui Zhang, Yulan He, Xing Xie, and Ji-Rong Wen. 2018. Automatically learning topics and
difficulty levels of problems in online judge systems. ACM Transactions on Information Systems (TOIS) 36, 3 (2018), 27.

[67] Zhou Zhao, Hanqing Lu, Deng Cai, Xiaofei He, and Yueting Zhuang. 2016. User preference learning for online social
recommendation. IEEE Transactions on Knowledge and Data Engineering 28, 9 (2016), 2522–2534.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 111. Publication date: 2019.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collaborative Filtering
	2.2 Matrix Factorization
	2.3 Neural Collaborative Filtering
	2.4 Convolutional Neural Network

	3 Preliminaries
	3.1 Problem Formulation
	3.2 Neural Collaborative Filtering

	4 ConvNCF Framework
	4.1 Framework Overview
	4.2 Outer Product Layer
	4.3 Convolutional Layers
	4.4 Model Prediction and Training

	5 Three ConvNCF Methods
	5.1 ConvNCF-MF
	5.2 ConvNCF-FISM
	5.3 ConvNCF-SVD++
	5.4 Embedding Pre-training and Adaptive Regularization

	6 Experiments
	6.1 Experimental Settings
	6.2 Performance Comparison (RQ1)
	6.3 Modeling Embedding Dimension Correlations (RQ2)
	6.4 Hyperparameter Study (RQ3)

	7 Conclusion
	Acknowledgments
	References

