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ABSTRACT
The ability of recommending cold items (that have no behavior
history) is a core strength of multimedia recommendation compared
with behavior-only collaborative filtering. To learn effective item
representation, a key challenge lies in the discrepancy between
training and testing, since the cold items only exist in the testing
data. This means that the signal used to represent an item varies
during training and testing — in the training stage, we can represent
an item with both collaborative embedding and content embedding;
whereas in the testing stage, we represent a cold item with content
embedding only. Nevertheless, existing learning frameworks omit
this critical discrepancy, resulting in suboptimal item representation
for multimedia recommendation.

In this work, we pay special attention to cold items in multimedia
recommender training. To address the discrepancy, we first
represent an item with dual representation, i.e., two vectors
where one follows the traditional way that combines collaborative
embedding and content embedding, and the other assumes that
the item is cold by replacing the collaborative embedding with
zero vector. We then propose a Multi-Task Pairwise Ranking
(MTPR) framework for model training, which enforces the observed
interactions ranking higher than the unobserved ones even if the
item is assumed to be cold. As a general learning framework, Our
MTPR is agnostic to the choice of the collaborative (and/or content)
encoder. We demonstrate it on VBPR, a representative multimedia
recommendation model based on matrix factorization. Extensive
experiments on three datasets of diverse domains validate MTPR,
which leads to better representation for both cold and non-cold
items in the testing stage, thus improving the overall performance
of multimedia recommendation. 1

∗Xiang Wang is the corresponding author.
1We release the experimental codes at: https://github.com/duxy-me/MTPR.
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1 INTRODUCTION
Collaborative filtering (CF), as a prevalent technique in personalized
recommendation, has been extensively studied. It relies heavily
on historical interactions between users and items (e.g., views,
clicks, and ratings). The behavioral patterns are usually encoded
as collaborative embeddings, which evolve from ID embeddings
of matrix factorization [32], history embeddings of item-based
encoders [18, 20], to holistic graph embeddings of recent graph-
based encoders [4, 13, 44]. Despite the remarkable performance,
such behavior-only CF methods suffer from cold-start issues —
that is, they cannot generate collaborative embeddings of new-
coming or unseen items, which never appear with the observed
user interactions during model training.

Compared with behavior-only CF, multimedia recommendation
is able to harness rich content of cold items to discover user
interests on them. In particular, although no behavior history is
available, there are multimodal information (e.g., frames, audios,
comments) associated with cold items (e.g., images in Pinterest and
Instagram,micro-videos in TikTok and Kuaishou). Earlymultimedia
recommender models [1, 11, 40] exploit such content to generate
content embeddings to reflect intrinsic similarity among items, thus
transferring user preference from non-cold items to cold ones. One
major limitation is that it ignores the collaborative signal, which
leads to suboptimal representation ability. Having realized the
limitation, recent works like VBPR [12], ACF [5], and MMGCN [47]
incorporate collaborative embeddings into content embeddings to
yield better item representations. Considering the content similarity
of items and behavioral similarity of users simultaneously enable
these methods to reconstruct the historical interactions well.
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Figure 1: A demo space for the VBPR features. Owing to the
discrepancy between training and testing, the cold item q3 is
assigned with lower confidence than the negative non-cold
q1, while q3 is more similar to the positive q2 w.r.t. content.

Nevertheless, we argue that these prior efforts [5, 12, 47] forgo
the key challenge of discrepancy between training and testing
— the signal used to represent a non-cold item in training and a
cold item in testing varies significantly. To be more specific, in the
training phase, these methods can represent an observed item with
both collaborative embedding and content embedding, whereas
in testing they have to use the zero vector as the collaborative
embedding of a cold item. Clearly, such critical discrepancy results
in inconsistent representations of items and further influences the
ranking of cold items negatively, compared with the non-cold items.
To illustrate how incomparable the cold and non-cold items are, we
show a toy example of VBPR [12] in Figure 1, involving a target
user p, a negative non-cold item q1, a positive non-cold item q2
learned in the training, and a positive cold item q3 in the future
testing data. Wherein, the coordinates c and e indicate the content
embedding and collaborative embedding, respectively. For each
item, its projection to the target user p (i.e., the dashed yellow line)
is the confidence in matching her interest (cf. the inner product
adopted in VBPR to estimate user preference on an item). Obviously,
owing to the discrepancy between training and testing, the cold item
q3 is assigned with lower confidence than the non-cold but negative
item q1, despite that q3 is more similar to the positive q2 w.r.t.
content. Therefore, as they omit this critical discrepancy, existing
learning frameworks result in suboptimal item representations for
multimedia recommendation.

In this work, we pay special attention to cold items in multimedia
recommender training, in order to address the discrepancy of
item representations. Towards this end, we represent an item in
training with dual representation, which comprises two vectors:
1) normal representation, which follows the traditional way to
combine its collaborative embedding and content embedding
and 2) counterfactual representation, which adopts the idea of
counterfactual thinking and assumes that it is cold-start by replacing
the collaborative embedding with the zero vector. Conceptually,
counterfactual representations answer the question: How would the
representation change if one item observed during training becomes a
cold item in testing? and measure the discrepancy. Based on these
two vectors, we then propose a new optimization framework,Multi-
Task Pairwise Ranking (MTPR), for model training.

Given a pair of positive and negative items (say, i and j),
we associate it with two pairwise loss branches, each of which

corresponds to one optimization task: 1) a pairwise ranking between
their normal representations, which remains consistent to the
classic BPR (Bayesian Personalized Ranking) loss [32]; and 2) a
pairwise comparison between their counterfactual representations,
which encourages the positive i to be ranked higher than the
negative j, assuming these two items were cold-start during
training. Besides, we introduce two regularization terms to make
the representations across normal and counterfactual spaces
comparable, so as to solve the discrepancy issue. Benefiting from
such multi-task learning, our MTPR is able to effectively solve
the discrepancy during training and testing. It is worthwhile
highlighting that our MTPR is a general learning framework that is
agnostic to the choice of the collaborative (and/or content) encoder,
which can generate ID-, history-, or graph-based collaborative
embeddings.We demonstrate it on VBPRwith amatrix factorization
(MF) encoder and conduct extensive experiments to validate
the effectiveness of recommending cold items. In a nutshell, we
summarize the main contributions as:
• We highlight the training-testing discrepancy for cold item
representation in multimedia recommendation.

• We propose a novel generic learning framework MTPR, which
devises dual item representations consisting of normal and
counterfactual representations and optimizes them via four
pairwise loss branches to solve the discrepancy.

• Extensive experiments on three public datasets validate MTPR,
which leads to better representations for both cold and non-cold
items in testing.

2 PRELIMINARY
In this section, we illustrate the technical preliminary. For ease
of reading, we use bold uppercase letter to denote a matrix, bold
lowercase letter to denote a vector, italic letter to denote a scalar,
and calligraphic uppercase letter to denote a set.

2.1 Multimedia Recommendation
Multimedia recommendation methods aim to predict the preference
of user u on item i . Recent works mostly take two vectors pu and
qi to represent user u and item i , respectively. Then the preference
score of user u on item i could be estimated with the function,

ŷui = ϕ(pu , qi ). (1)

The function ϕ(·), user representation pu and item representation
qi are three core components for recommendation with many
variants in different scenarios. In multimedia recommendation,
every item is associated with its content embedding, hence the
item representation is mostly the combination of its collaborative
embedding and content embedding:

qi = ρ(ei , ci ), (2)

where ρ(·) indicates the combination function, ei indicates the
collaborative embedding, and ci indicates the content embedding
which is usually defined as ci =W · ti , where ti ∈ RF is the content
feature of item i and W ∈ RD×F denotes the projection matrix. In
this paper, we take this as the definition of ci by default.

Additionally, we introduce a typical implementation of ρ(·) as,

ρ(ei , ci ) = ei ∥ci , (3)



where ∥ is the vector concatenation operator. This is the item
representation used in VBPR [12], and widely used as the raw
item representation in recent works [36, 47].

2.2 Learning Paradigm
We use a matrix R ∈ RM×N to denote the user-item behaviors,
whereM andN indicate the number of users and items, respectively.
The (u, i)-th entry of R is denoted as rui , where rui = 1 indicates
that the i-th item is in the behavioral history of the u-th user, 0
otherwise. In addition, we use R = {(u, i)|rui = 1} to denote the
set of the observational data. The learning objective is to find an
appropriate function ϕ(pu , qi ) to predict the preference score ŷui .

In order to optimize the prediction function, most recent works
adopt Bayesian Personalized Ranking (BPR)[32], which is based
on the personalized hypothesis that a user’s preference on the
observed interactions should be scored higher than that on the
unobserved interactions. Thus it devotes to maximize the margin
between the observed and unobserved interactions. Formally, its
objective function is,

LBPR (D|Θ) =
∑

(u,i, j)∈D

− lnσ (ŷui − ŷuj ) + λ∥Θ∥2, (4)

where D = {(u, i, j)|(u, i) ∈ R, (u, j) < R} indicates the set
of training instances, σ (·) is the sigmoid function, and λ is the
regularization parameters to prevent overfitting.

2.3 Discrepancy between Training and Testing
The key challenge of multimedia recommendation relies on the
discrepancy between training and testing. The training process
relies on the behavior history, where only the non-cold items could
be involved. Hence the cold item representations composed of only
content embedding have never been considered by the optimizing
methods. However, the testing process compares them with the
non-cold item representations, even though they are incomparable
theoretically. This causes the suboptimal situation discussed in
Figure 1, which severely influences the ranking performances.

Formally, as we introduced in section 2.1, the item is represented
as qi = ρ(ei , ci ), where ei indicates the collaborative embeddings
learned from the behavior history. If item i is seen in training, its
collaborative embedding is non-zero and informative, i.e., ei , 0;
if it is unseen in training, its collaborative embedding is assigned
with an all-zero vector i.e., ei = 0. Obviously, ρ(0, ci ) reveals that
the representation capability of cold items completely comes from
their content embedding. This makes the non-cold and the cold
item ranking seem like two separate tasks. To link the two tasks,
we devise a multi-task method to bridge the cold and non-cold
representations simultaneously.

3 METHOD
In this section, we introduce the proposed Multi-Task Pairwise
Ranking framework (MTPR). As shown in Figure 2, the core
components of MTPR are the dual item representations and the
Multi-Task Pairwise Ranking loss function. We will illustrate them
here and introduce the training and prediction measures.

3.1 Dual Item Representations
In section 2.3, we demonstrate the discrepancy between training
and testing. The main problem is that the cold item representations

never appear in the training process. Therefore, we devise the
dual item representations to present an item from the perspective
of counterfactual thinking. Normal Representation (N-rep
for short) follows the traditional way and combines the item
collaborative embedding and content embedding. Counterfactual
Representation (C-rep for short) assumes that the item is cold-
start and replaces the collaborative embedding with the all-zero
vector. Formally, the dual representation of item i are,

qNi = ρ(ei , ci ), qCi = ρ(0, ci ), (5)

where qN and qC indicate the N-rep and C-rep, respectively, 0 ∈

{0}D is the all-zero vector. In order to make the N-rep and C-rep
comparable, they are projected to a common space. Taking VBPR
as the example, the dual representations are qNi =Wq (ei | |ci ) and
qCi =Wq (0| |ci ), whereWq is the projection matrix. Analogously,
the user embeddings are projected to the same space viaWp , i.e.,
pou =Wppu , where pu is his/her original representation. Figure 2
presents the flows, where the N-rep and C-rep components are
separately colored red and blue.

The dual representations have some desired properties:
• The N-rep qNi corresponds to the non-cold item representations
that are the same as the representations defined in Equation 2. It
would inherit the advantages of the traditional models.

• The C-rep qCi corresponds to the item representations when item
i is a cold item, which is significantly related to the performance
of cold items.

• The N-rep and C-rep of a cold item are identical, i.e., qNi = qCi ,
because the collaborative embedding ei = 0 when item i is cold.
If the N-rep and C-rep become comparable by modeling their

relations during the training process, the non-cold items and cold
items could also be comparable according to the properties of the
dual representations. Therefore, we could say that we succeed in
bridging the representations of non-cold and cold items via the dual
representations. Next, we will introduce the Multi-Task Pairwise
Ranking to model the relations between N-rep and C-rep.

3.2 Multi-Task Pairwise Ranking
Multi-Task Pairwise Ranking (MTPR) consists of four pairwise
branches, to model the correlations between N-rep and C-rep, as
shown in Figure 2. Given the training pair (u, i, j) ∈ D, where
D = {(u, i, j)|(u, i) ∈ R ∧ (u, j) < R}, we capture the dual item
representations, where qNi and qCi are the dual representations of
the positive item i , and qNj , qCj are the dual representations of the
negative item j. Then we estimate the user preferences on both
items i and j with the normal measure and counterfactual measure,

ŷNui = ϕ(pou , q
N
i ), ŷCui = ϕ(pou , q

C
i ),

ŷNuj = ϕ(pou , q
N
j ), ŷCuj = ϕ(pou , q

C
j ).

(6)

Following the basic idea in BPR, we aim to score the positive item
higher than the negative one. Thus we organize four pairwise
comparisons as,

LNN (u, i, j) = − lnσ (ŷNui − ŷNuj ), LCC (u, i, j) = − lnσ (ŷCui − ŷCuj ),

LNC (u, i, j) = − lnσ (ŷNui − ŷCuj ), LCN (u, i, j) = − lnσ (ŷCui − ŷNuj ).

(7)
The four terms reflect two tasks and two constraints:
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Figure 2: Framework of MTPR. The user, N-rep and C-rep components are colored green, red and blue, respectively.

(1) The term LNN (u, i, j) focuses on the pairwise ranking task on
the normal representations such as the VBPR method [12]. Due
to the use of collaborative embedding, LNN (u, i, j) concentrates
on the ranking task on the non-cold items.

(2) The term LCC (u, i, j) indicates the pairwise ranking task on
the counterfactual representations that consist of content
embedding, such as the DUIF method [11]. The counterfactual
representation performs consistently for the non-cold items
and cold items, thus LCC (u, i, j) tries to deal with the overall
ranking task.

(3) The remaining two terms LNC (u, i, j) and LCN (u, i, j) are the
key to build the correlations between N-rep and C-rep. They
constraint the comparison across the normal and counterfactual
representations when optimizing the previous two tasks.

Finally, with the four terms, the objective function of MTPR is,

LMTPR (D|Θ∗) =
∑

(u,i, j)∈D

L(u, i, j)

+λe ∥Θe ∥
2 + λw ∥Θw ∥2 + λq ∥Θq ∥

2,

(8)

where λ∗ denote the regularization factors, Θe indicates the
embeddings, Θq indicates the item projection matrix, while Θw
indicates the rest of projection parameters, and

L(u, i, j) =LNN (u, i, j) + LCC (u, i, j)

+ LNC (u, i, j) + LCN (u, i, j).
(9)

3.3 Training and Prediction
To explore how the framework works, we demonstrate MTPR on
VBPR [12], which uses a classic matrix factorization (MF) encoder.

Initialization. At the beginning of the training phase, the user
collaborative embeddings pu is randomly initialized, and the item
collaborative embeddings qi are initialized according to the type of
the items. For the non-cold items, their collaborative embeddings
are initialized randomly as usual. For the cold items, since they
are not interacted by any users, their collaborative embeddings
are initialized with zero vectors, which indicate they do not have
collaborative information. The remaining projection matrices, such
asW,Wp andWq , are randomly initialized.

Optimization. According to the Equations 2 and 5, there are two
sets of parameters to be trained in our models, where E = {pu , ei }
is the set of collaborative embeddings functioning on specific
user or item, while W = {W,Wp ,Wq } is the set of projection
matrices shared by all users or items. Since their gradients would
have different characteristics, during the training process, we use
different optimizers with different learning rates with regularization
factors to optimize.

Table 1: Statistics of the experimental datasets.

Dataset Amazon Tiktok Movielens
#User 27,044 28,750 55,485
#Item 86,506 38,102 5,986
#Interaction 201,279 449,593 1,184,023
#Cold Item 17,696 6,171 2,000
Cold Ratio 20.5% 16.2% 33.4%
Visual Dimension 64 128 128
Acoustic Dimension - 128 128
Textual Dimension - - 100

Ranking. To recommend the appropriate items for a specific user
u, the items are ranked via their user preference score, which is
computed via the item N-rep in our model. The characteristics
discussed in Section 3.1 reveal that the N-rep is the same as the
C-rep for cold items, while it consists of more information for the
non-cold items. Thus, the preference scores are computed with the
unified prediction function,

ŷui = ŷ
N
ui =< pu , qNi > . (10)

4 EXPERIMENTS
As the key contribution of MTPR is the dual item representation
and the MTPR loss, we conduct abundant experiments to answer
the following research questions,
RQ1 How does our MTPR perform compared with the state-of-
the-art methods?
RQ2 How do the dual item representations (optimized with MTPR)
contribute to the model performance?
RQ3 How do the multi-modal content features impact the results?
RQ4 How does MTPR optimize an effective model?

At the beginning, we introduce the experimental settings
including the datasets, evaluation protocols, baselines and
parameter settings.

4.1 Experimental Settings
4.1.1 Datasets. We conduct our experiments on three public
datasets, Amazon, Tiktok, and Movielens, the statistics of which
are listed in Table 1. In order to generate cold-start validation and
testing items, we have re-organized the datasets.

Amazon2 records the visiting histories on the products of
Amazon. We use the men’s clothing category to evaluate the task
of image-based recommendation. Following previous work [12],
we take the review histories as implicit feedback and remove the
users with less than five interactions. Every item is correlated to
an image, which is originally represented by sparse CNN features.

2http://jmcauley.ucsd.edu/data/amazon/.



We use PCA [48] to compact them and finally obtain a 64-d visual
feature for each image.

Tiktok3 records the viewing history on the micro-videos of
Tiktok. The dataset provides visual and acoustic features officially.
We randomly sample 100,000 items from the original dataset,
collect their interactions, and remove the users with less than five
interactions and the items with less than two interactions. We
randomly sample 6,000 items to be cold-start items, the interactions
of which are removed from the training set. In addition, after
splitting the dataset, we find 171 unpopular items turn out to be
unseen in the training set. Thus, the number of cold items is 6,171.

Movielens4 records the visiting history on movies information.
We generate the multimodal features from the pictures, voices, and
titles following previous work [47]. We also compact the visual
features to 128-d vectors via PCA. We randomly sample 2,000 items
to be cold-start items, the interactions of which are removed from
the training set.

4.1.2 Evaluation Protocols. For each user, we randomly sample
80%, 10%, and 10% interactions for training, validation and testing,
respectively. Cold items only exist in validation and testing sets.
We ensure that each user has at least one item in validation and
testing sets, respectively. These observed interactions are treated
as positive samples. Besides, we randomly sample some negative
samples and pair totally 1,000 items for each user in validation and
testing, respectively. Each method generate their predictions for
the user-item pairs.

We adopt two metrics to evaluate the predictions, Area
Under Curve (AUC) [12] and Normalized Discounted Cumulative
Gain (NDCG) [14]. AUC reflects the global improvements over the
testing items and NDCG@K reflects the improvements over Top-K
ranks. In our experiments, we compute the AUC, NDCG@5, and
NDCG@10 for each user and report the average scores. Particularly,
in order to explore the impacts on non-cold and cold items, we
separate the positive items as non-cold positive items and cold
positive items, and report their average scores separately.

4.1.3 Baselines. Our MTPR is a general learning framework
agnostic to the choice of the collaborative (and/or content) encoder.
To justify the effectiveness of our method, We demonstrate it
on VBPR, a representative multimedia recommendation model
based on matrix factorization. To make a fair comparison,we
select the state-of-the-art matrix factorization based multimedia
recommendation methods as our baseline methods,

• BPR [32] represents the items with the collaborative embeddings
and optimizes them with a pair-wise loss. It is a competitive
method built on ID-based item representations.

• CBPR is a pairwise impelmentation of DUIF [11], which
represents the items with the item content. It reflects the impact
of item content without collaborative information.

• VBPR [12] is the state-of-the-art matrix factorization based
method for cold-start items. It incorporates the ID-based
embeddings and content-based embeddings in order to give
considerations to both the non-cold and cold items.

3http://ai-lab-challenge.bytedance.com/tce/vc/.
4https://grouplens.org/datasets/movielens/.

• AMR [36] is a competitive method that introduces adversarial
noise in the training process to increase the robustness and
performances of multimedia recommendation methods. We
follow the original paper and implement the matrix factorization
based AMR to obtain the results.

4.1.4 Parameter Setting. We implement the methods based on
PyTorch [28]. Empirically, we adopt Adagrad [8] to optimize
the user and item embeddings which are private features, and
Adam [19] to optimize the rest parameters that are generally
used in every prediction. We use the batch size of 512 and
the representation dimension D of 32. For all models including
baselines and our method, we conduct the grid search for learning
rate in {1−4,1−3,1−2,1−1}. We also tune the regularization factors
in Equation 8. λe , λw and λq of [0, 1−4, 1−2, 1] are tested. The
collaborative embeddings in all the methods are initialized with
random values or pre-trained BPR embeddings. The rest parameters
are randomly initialized. We train every method for 100 epochs, use
an early-stop strategy referred to the validation scores, and report
the corresponding testing scores.

4.2 Performances Comparison (RQ1)
We select the set of parameters that attain the best NDCG@5 score
in the validation set, and report their testing results in Table 2. From
the table, we have the following observations,

(1) MTPR outperforms BPR, CBPR, VBPR, and AMR in all the
cases. Although it adopts VBPR as the original representations,
with the multi-task pairwise ranking loss, MTPR achieves a high
improvement on both global performance (i.e., AUC) and top
ranks (i.e., NDCG). In addition, MTPR not only improves the cold
representations but also does well in non-cold items. This verifies
that MTPR is an effective measure to bridge the collaborative
information and content embeddings, and offers simultaneous
considerations to both non-cold and cold items.
(2) Generally, themodels incorporating collaborative embeddings

have higher NDCG scores. The situation reflects the advantages of
collaborative information on Top-K recommendations. In contrast,
CBPR, the model that uses content embeddings only, outperforms
other methods on the NDCG scores of cold items. The situation
reflects the importance of content embeddings to cold items.
According to the effect of the two representations, the key to cold-
start recommendation is therefore to effectively incorporate the
two representations. In such way, MTPR does well compared with
the baseline methods.
(3) The representations incorporating the content embeddings

could not only improve the cold item representations but also
promote the non-cold item representations. The typical signal is
that VBPR and MTPR outperform BPR in most non-cold evaluation
cases. The exceptions are caused by the model selection measure,
because we select the results with the highest overall NDCG@5,
which would be significantly impacted by the cold item scores.
In addition, the improvements on non-cold items correspond to
the dataset. The incorporation of content embeddings significantly
benefits the model for Amazon, while it rarely affects the models for
Tiktok and Movielens. This phenomenon is caused by the number
of interactions in the datasets. On average, the items in Amazon
have less than three interactions, while the items in Tiktok and



Table 2: The performances of the recommendation methods. non-cold, Cold, and All indicate the performance of the sets of
non-cold items, cold items and overall items, respectively. RI is the relative improvement of MTPR over baselines. The best
score and second best score are annotated with bold font and underline, respectively.

Metric Model Amazon Tiktok Movielens
Non-Cold Cold All RI (%) Non-Cold Cold All RI (%) Non-Cold Cold All RI (%)

AUC

BPR 0.5434 0.5047 0.5310 44.4 0.8662 0.6879 0.7670 15.0 0.9435 0.6231 0.8074 10.5
CBPR 0.7002 0.7214 0.7066 8.5 0.6913 0.6826 0.6864 28.6 0.8026 0.6681 0.7478 19.3
VBPR 0.6981 0.7218 0.7054 8.7 0.8930 0.7501 0.8119 8.7 0.9503 0.6696 0.8317 7.3
AMR 0.6753 0.7104 0.6867 11.7 0.8975 0.7592 0.8189 7.8 0.9516 0.6758 0.8350 6.9
MTPR 0.7603 0.7816 0.7669 - 0.8691 0.8940 0.8824 - 0.9347 0.8380 0.8922 -

NDCG@5

BPR 0.0583 0.0000 0.0393 65.0 0.1941 0.0000 0.0961 7.4 0.2101 0.0000 0.1445 13.1
CBPR 0.0314 0.0395 0.0344 88.4 0.0208 0.0210 0.0240 329.6 0.0754 0.0141 0.0608 168.9
VBPR 0.0437 0.0368 0.0425 52.3 0.1946 0.0018 0.0969 6.6 0.2160 0.0004 0.1479 10.4
AMR 0.0636 0.0145 0.0485 33.6 0.1968 0.0027 0.0987 4.6 0.2191 0.0006 0.1512 8.1
MTPR 0.0843 0.0213 0.0648 - 0.1950 0.0132 0.1032 - 0.2368 0.0030 0.1634 -

NDCG@10

BPR 0.0700 0.0000 0.0468 69.3 0.2278 0.0000 0.1127 10.8 0.2494 0.0000 0.1687 12.5
CBPR 0.0424 0.0519 0.0460 72.4 0.0287 0.0291 0.0330 278.2 0.0948 0.0206 0.0759 150.1
VBPR 0.0557 0.0493 0.0541 46.5 0.2318 0.0030 0.1152 8.5 0.2584 0.0009 0.1743 8.9
AMR 0.0749 0.0236 0.0590 34.4 0.2346 0.0049 0.1177 6.1 0.2629 0.0010 0.1778 6.7
MTPR 0.1004 0.0327 0.0793 - 0.2263 0.0241 0.1249 - 0.2787 0.0065 0.1898 -

Figure 3: The t-SNE visualization of VBPR item
representations in TikTok. c- and e-axis indicate the content
embeddings and collaborative embeddings, respectively.

Movielens have more than 11 interactions. More interactions bring
stronger collaborative information, so the effect of extra content
embeddings is less.

4.3 Effects of MTPR (RQ2)
The core components of MTPR is the dual item representation and
the multi-task pairwise ranking loss. We conduct the following
experiments to explore the effectiveness of the two components.

4.3.1 Effectiveness of Dual Item Representations. The dual item
representation is composed of two vectors, N-rep and C-rep, and
both are used in the training process. In the testing process, the
final item representation is the N-rep, as discussed in section 3.1.
In order to demonstrate the properties of item representations, we
visualize the items representations of BPR, VBPR and MTPR.

Firstly, we take Tiktok dataset to show the visualization of VBPR
item representations in Figure 3. We use t-SNE [26] to project the
content embeddings and collaborative embeddings of Tiktok to 1-d
space separately, and draw the points on the 2-d map. The c-axis
and e-axis indicate the content embeddings and the collaborative
embeddings, respectively. The blue points and the orange points
indicate the cold items and the non-cold items, respectively. From
the figure, we have three key observations,
• The cold items are completely detached from the non-cold items
in the e-axis, which means the lack of collaborative embedding
of cold items makes them incomparable with the non-cold items.

• The situation that both the cold items and non-cold items cover
most of the c range indicates that most of the cold items have
similar content as the non-cold items. However, due to the
limitation of e, their representations are separated from their
similar non-cold items.

• The collaborative embeddings and the content embeddings of the
non-cold items show obvious correlations, such as the cluster in
the black rectangle at the top-right corner of the point map. This
cluster corresponds to a set of items which consist of content and
collaborative features. However, the cold items that have similar
content embeddings are located far away from the rectangle and
unable to take advantage of the collaborative knowledge. This is
another evidence of the limitation of VBPR representation.

Next, we also use the Tiktok dataset to show the user and item
distributions from BPR, VBPR and MTPR in Figure 4. We leverage t-
SNE [26] to project the user and item representations to a 2-d space,
and plot them in a point map. The blue, orange and gray points
indicate the cold items, non-cold items, and the users, respectively.

According to the meaning of t-SNE [26], a cluster of the points
reflect the similarity among them. The situation that the points
of users and items belong to different clusters indicates that all
the methods have produced informative representations. However,
Due to the different item distributions of the methods, the effects
of their representations are much different. We then analyze their
item distributions respectively.

BPR The cold items are detached from the non-cold items. In most
cases, they would be treated as unrelated sets. Hence, no effective
connections between the non-cold items and cold items could
be captured. However, the observation that the cold items are
surrounded by the users and non-cold items indicate that they still
have a reasonable position in the rank and could contribute a bit
to the results.
VBPR As discussed in Figure 3, the non-cold items with similar
content embeddings would cluster, such as the items in the black
rectangle. Thus the cold items with similar content embeddings
should cluster well too. In other words, the cluster indicates
the effectiveness of item correlations. However, the cold items



Figure 4: The item distribution visualized by t-SNE. The ideal distributions is the items would have obvious clusters and the
non-cold items and cold items could be mixed, as the distribution of MTPR.

Table 3: AUC of VBPR, SBPR, DBPR and MTPR.

Model Amazon Tiktok Movielens
Non-Cold Cold All Non-Cold Cold All Non-Cold Cold All

VBPR 0.646 0.652 0.648 0.933 0.705 0.838 0.879 0.748 0.807
SBPR 0.715 0.616 0.683 0.865 0.804 0.831 0.957 0.613 0.809
DBPR 0.752 0.688 0.731 0.890 0.790 0.834 0.909 0.772 0.854
MTPR 0.760 0.782 0.767 0.869 0.894 0.882 0.935 0.838 0.892

represented by VBPR are scattered randomly on the cloud map.
That means that in such a space, the correlations of the cold items
are meaningless, and are incomparable with the non-cold items.
MTPR The apparent cluster of cold items indicates that the
correlations inside the cold items are effectively represented. In
addition, the situation that the cold items are blended with the
non-cold items means that MTPR has successfully modeled the
correlations between the cold and non-cold items. This verifies
the effectiveness of MTPR.

4.3.2 Effectiveness of multi-task pairwise ranking. In order to verify
the necessity of the four pairwise ranking branches, we devise
two simplified training loss named Single-branch BPR (SBPR) and
Double-branch BPR (DBPR), where SBPR optimizes the models
with only LNN and DBPR optimizes the models with LNN and
LCC . Actually, SBPR indicates the single task solution, similar to
VBPR [12]. DBPR indicates the double-task solution without the
constraint terms, as a simple composition of the tasks of VBPR [12]
and CBPR [11].

From the AUC scores of these training loss on the three
datasets presented in Table 3, we have two observations. 1) The
performances of SBPR and VBPR are similar because SBPR only
linearly projects the VBPR representations to a common space. This
suggests that the projection might not the key to improve the item
representations; 2) The situation that DBPR outperforms SBPR on
Amazon and Movielens verifies the effectiveness of introducing
C-rep into the training process. With DBPR, the N-rep and C-rep
could transfer their information via their interacted user and their
shared content embeddings. 3) Lacking the comparison across the
non-cold and cold items limits the improvement of DBPR, which is
verified by its worse performance than MTPR over all datasets.

4.4 Multimodal Features (RQ3)
The multimodal features are significant for the predicting results,
since they are the only features for cold items. We explore the
impact of different modal features on Movielens by using different
combination of modal features. We train the models with acoustic
features, visual features and textual features, and their combination,
respectively, and list the results in Table 4.

The results reveal the contributions of the three modal
features for MTPR. The NDCG scores show that the acoustic
and visual features could help the cold items increase their ranks.

Table 4: Impact of multimodal features tested on Movielens.
A-F, V-F, and T-F indicate the Acoustic feature, Visual
feature, and Textual feature, respectively. C-F indicates the
feature composed of A-F, V-F, and T-F.

Feat AUC NDCG@5 NDCG@10
Non-Cold Cold All Non-Cold Cold All Non-Cold Cold All

A-F 0.9306 0.8194 0.8830 0.2210 0.0014 0.1534 0.2641 0.0038 0.1804
V-F 0.9370 0.7890 0.8731 0.2284 0.0015 0.1573 0.2721 0.0026 0.1848
T-F 0.9273 0.7941 0.8692 0.2335 0.0001 0.1611 0.2780 0.0008 0.1878
C-F 0.9347 0.8380 0.8922 0.2368 0.0030 0.1634 0.2787 0.0065 0.1898

Table 5: Parameter initialization with Random Values
vs Parameter Initialization with Pre-trained collaborative
Embedding. R and P indicate the Random initialization and
Pretrained initialization, respectively.

Metric Init Amazon Tiktok Movielens
Non-Cold Cold All Non-Cold Cold All Non-Cold Cold All

AUC R 0.760 0.782 0.767 0.883 0.888 0.885 0.937 0.803 0.879
P 0.766 0.825 0.785 0.869 0.894 0.882 0.935 0.838 0.892

NDCG@5 R 0.084 0.021 0.065 0.173 0.013 0.093 0.190 0.004 0.133
P 0.075 0.020 0.058 0.195 0.013 0.103 0.237 0.003 0.163

NDCG@10 R 0.100 0.033 0.079 0.207 0.024 0.116 0.232 0.008 0.159
P 0.090 0.032 0.071 0.226 0.024 0.125 0.279 0.007 0.190

Correspondingly, their AUC scores are better than that of the textual
feature. The non-cold test of textual features on NDCG outperforms
those of the acoustic and visual features. This means that the textual
features make the non-cold items more distinguishable at the top
ranks. Overall, by combining all three modalities, the model could
achieve the best performance on all metrics.

4.5 Training Details (RQ4)
We discuss the impact of different initialization measures, and
present the training curves to illustrate the training process.

4.5.1 Parameter Initialization. We empirically adopt two measures
to initialize the collaborative embeddings and list the results in
Table 5. Measure R initializes the embedding with random values,
while measure P uses the embeddings trained by BPR to directly
introduce the informative features from the user-item interactions.
The results reveal that the impacts of the initialization measures
rely on the quality of the pre-trained embeddings. As discussed in
Table 2, BPR performs poor on Amazon, indicating that its trained
embeddings might contain some noisy information which impacts
the NDCG scores on Amazon negatively. In contrast, the NDCG
scores on the other two datasets are significantly improved by
introducing the informative embeddings.

4.5.2 Training Process. In Figure 5, we plot the curve of the testing
performances of the models reported in Table 2. The models are
evaluated at every 10 epochs. All the curves change in the same
trend. They achieve a nice performance in 10 epochs, oscillate
slightly in the following training process, and go stable eventually.
This verifies that MTPR could converge stably and it is easy to train.
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Figure 5: The scores of MTPR on the test data during the training process.
5 RELATEDWORKS
5.1 Multimedia Recommendation
As a key branch of recommendation approaches [37, 43],
collaborative filtering (CF) generates personalized collaborative
features by analyzing the user-item interaction history [20, 50].
The core is to present the users and items with latent factor vectors
(i.e., embeddings), which are mostly optimized via the matrix
factorization methods [15, 24, 39]. Recently, deep neural networks
boost the emergence of generalized matrix factorization methods
which take in the embeddings and predict user preferences via
neural networks. NCF [14] proposes a two-pathway MLP neural
network to generate the predictions. ConvNCF [6] proposes a
convolutional neural network to deeply explore the ability of
embedding representations. Graph neural networks are also used
to capture better collaborative features [44, 45].

In multimedia recommendation tasks, the items are always
associated with multimedia content [7, 23, 35], which could
accurately describe the characteristics of the items themselves [29,
38]. DUIF [11] takes CNN features to represent the images.
Kristoffersen et al. [21] propose a joint embedding composed of
content and context. MMGCN [47] introduces the graph neural
network in the multimedia domain by leveraging the multimedia
content embeddings. Yang et al. [49] build multiple graphs to
improve the multimedia features. Huang et al. [16] use a knowledge
graph to enhance the explainable sequential recommender. Wang et
al. [46] recommend tags according to the social properties of users
and tags. However, these methods are mostly built on non-cold
items and neglect the performances of cold items.
5.2 Cold-start Recommendation
The items that are not interacted by users are termed cold-start
items or cold items. They widely exist in online platforms. As they
perform much different from the non-cold items in collaborative
perspective, to rank the two types of items jointly has been a
significant challenge. Vartak et al. [41] figure that the personalized
recommendation problem is equivalent to a few-shot learning
task [9, 17, 30], where the representations of users and items could
be generated through a small amount of interaction history (i.e.,
support data) in the warm-up process [22, 27]. However, due to the
necessity of the warm-up process, these methods are not suited for
the completely cold items.

As the collaborative embeddings represent the strong collaborative
representations for recommendation, many works attempt to link
the users and the cold items via context relations [2, 33, 40].
These structures severely rely on the external information. Notable
that the content embeddings are very common in multimedia
recommendation tasks and they could effectively represent the
completely cold items. Some works try to map the collaborative
embeddings with the input of content embeddings [3, 10]. In

practice, the collaborative and content embeddings reflect two
different perspectives of the items. Thus, VBPR [12] concatenates
the two kinds of embeddings in prediction and achieves a great
performance. AMR [36] improves the VBPR representations by
using adversarial training [31, 51].

Some methods noticed the influence of varying and missing
features [25, 34, 42]. For example, DropoutNet [42] leverages
a dropout-like structure to balance the strengths between
collaborative and content features. We argue that this data-
augmentation way is insufficient to entangle the relationships
among collaborative and content embeddings. Distinct from these
methods, we propose the multi-task pair-wise ranking method to
address the problem from the counterfactual perspective.

6 CONCLUSION
In this paper, we proposed a new framework MTPR to enhance
the cold-start multimedia recommendation. Specifically, we first
devised dual item representations consisting of two vectors, where
N-rep indicates the normal representation that corresponds to
all item representations and C-rep indicates the counterfactual
representation that assumes the item is cold. We then proposed
multi-task pairwise ranking, a loss function composed of four
pairwise ranking branches, to optimize the representations with
the target of modeling the correlations between non-cold and cold
items. Experimental results on three public multimedia datasets
verify the effectiveness of our method.

This work presents a fundamental step towards effectively
fusing collaborative and content information for multimedia
recommendation. As many models take collaborative and content
embeddings to represent an item for multimedia recommendation,
we plan to extend the influence of MTPR on a wider range of
models, such as neural collaborative filtering and graph-based
models. Moreover, we will involve more content information, such
as multimedia conversations with users and multimedia knowledge
graph of items, to assist the cold-start recommendation. In addition,
we would like to explore the challenges inherent in cold-start
recommendation, such as algorithmic fairness, evaluation metrics,
and long-tail issues.
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